816 research outputs found

    Automatic Salient Object Detection for Panoramic Images Using Region Growing and Fixation Prediction Model

    Full text link
    Almost all previous works on saliency detection have been dedicated to conventional images, however, with the outbreak of panoramic images due to the rapid development of VR or AR technology, it is becoming more challenging, meanwhile valuable for extracting salient contents in panoramic images. In this paper, we propose a novel bottom-up salient object detection framework for panoramic images. First, we employ a spatial density estimation method to roughly extract object proposal regions, with the help of region growing algorithm. Meanwhile, an eye fixation model is utilized to predict visually attractive parts in the image from the perspective of the human visual search mechanism. Then, the previous results are combined by the maxima normalization to get the coarse saliency map. Finally, a refinement step based on geodesic distance is utilized for post-processing to derive the final saliency map. To fairly evaluate the performance of the proposed approach, we propose a high-quality dataset of panoramic images (SalPan). Extensive evaluations demonstrate the effectiveness of our proposed method on panoramic images and the superiority of the proposed method against other methods.Comment: Previous Project website: https://github.com/ChunbiaoZhu/DCC-201

    Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

    Full text link
    This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information, and the resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised manner to avoid online weakly supervised learning and exploit them not only to extract high-level features but also to produce both intra- and inter-image saliency maps. Through a refinement step, the initial co-saliency maps can uniformly highlight co-salient regions and locate accurate object boundaries. To handle input image groups inconsistent in size, we propose to pool multi-regional descriptors including both within-segment and within-group information. In addition, the integrated multilayer graph is constructed to find the regions that the previous steps may not detect by seed propagation with low-level descriptors. In this work, we utilize the useful complementary components of high-, low-level information, and several learning-based steps. Our experiments have demonstrated that the proposed approach outperforms comparable co-saliency detection methods on widely used public databases and can also be directly applied to co-segmentation tasks.Comment: 13 pages, 10 figures, 3 table

    HSCS: Hierarchical Sparsity Based Co-saliency Detection for RGBD Images

    Full text link
    Co-saliency detection aims to discover common and salient objects in an image group containing more than two relevant images. Moreover, depth information has been demonstrated to be effective for many computer vision tasks. In this paper, we propose a novel co-saliency detection method for RGBD images based on hierarchical sparsity reconstruction and energy function refinement. With the assistance of the intra saliency map, the inter-image correspondence is formulated as a hierarchical sparsity reconstruction framework. The global sparsity reconstruction model with a ranking scheme focuses on capturing the global characteristics among the whole image group through a common foreground dictionary. The pairwise sparsity reconstruction model aims to explore the corresponding relationship between pairwise images through a set of pairwise dictionaries. In order to improve the intra-image smoothness and inter-image consistency, an energy function refinement model is proposed, which includes the unary data term, spatial smooth term, and holistic consistency term. Experiments on two RGBD co-saliency detection benchmarks demonstrate that the proposed method outperforms the state-of-the-art algorithms both qualitatively and quantitatively.Comment: 11 pages, 5 figures, Accepted by IEEE Transactions on Multimedia, https://rmcong.github.io

    Multi-interactive Dual-decoder for RGB-thermal Salient Object Detection

    Full text link
    RGB-thermal salient object detection (SOD) aims to segment the common prominent regions of visible image and corresponding thermal infrared image that we call it RGBT SOD. Existing methods don't fully explore and exploit the potentials of complementarity of different modalities and multi-type cues of image contents, which play a vital role in achieving accurate results. In this paper, we propose a multi-interactive dual-decoder to mine and model the multi-type interactions for accurate RGBT SOD. In specific, we first encode two modalities into multi-level multi-modal feature representations. Then, we design a novel dual-decoder to conduct the interactions of multi-level features, two modalities and global contexts. With these interactions, our method works well in diversely challenging scenarios even in the presence of invalid modality. Finally, we carry out extensive experiments on public RGBT and RGBD SOD datasets, and the results show that the proposed method achieves the outstanding performance against state-of-the-art algorithms. The source code has been released at:https://github.com/lz118/Multi-interactive-Dual-decoder.Comment: Accepted by IEEE TI

    DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

    Full text link
    A key problem in salient object detection is how to effectively model the semantic properties of salient objects in a data-driven manner. In this paper, we propose a multi-task deep saliency model based on a fully convolutional neural network (FCNN) with global input (whole raw images) and global output (whole saliency maps). In principle, the proposed saliency model takes a data-driven strategy for encoding the underlying saliency prior information, and then sets up a multi-task learning scheme for exploring the intrinsic correlations between saliency detection and semantic image segmentation. Through collaborative feature learning from such two correlated tasks, the shared fully convolutional layers produce effective features for object perception. Moreover, it is capable of capturing the semantic information on salient objects across different levels using the fully convolutional layers, which investigate the feature-sharing properties of salient object detection with great feature redundancy reduction. Finally, we present a graph Laplacian regularized nonlinear regression model for saliency refinement. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.Comment: To appear in IEEE Transactions on Image Processing (TIP), Project Website: http://www.zhaoliming.net/research/deepsalienc

    Review of Visual Saliency Detection with Comprehensive Information

    Full text link
    Visual saliency detection model simulates the human visual system to perceive the scene, and has been widely used in many vision tasks. With the acquisition technology development, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. Co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discission are conducted to provide a holistic overview of different saliency detection methods.Comment: 18 pages, 11 figures, 7 tables, Accepted by IEEE Transactions on Circuits and Systems for Video Technology 2018, https://rmcong.github.io

    Coarse-to-Fine Salient Object Detection with Low-Rank Matrix Recovery

    Full text link
    Low-Rank Matrix Recovery (LRMR) has recently been applied to saliency detection by decomposing image features into a low-rank component associated with background and a sparse component associated with visual salient regions. Despite its great potential, existing LRMR-based saliency detection methods seldom consider the inter-relationship among elements within these two components, thus are prone to generating scattered or incomplete saliency maps. In this paper, we introduce a novel and efficient LRMR-based saliency detection model under a coarse-to-fine framework to circumvent this limitation. First, we roughly measure the saliency of image regions with a baseline LRMR model that integrates a â„“1\ell_1-norm sparsity constraint and a Laplacian regularization smooth term. Given samples from the coarse saliency map, we then learn a projection that maps image features to refined saliency values, to significantly sharpen the object boundaries and to preserve the object entirety. We evaluate our framework against existing LRMR-based methods on three benchmark datasets. Experimental results validate the superiority of our method as well as the effectiveness of our suggested coarse-to-fine framework, especially for images containing multiple objects.Comment: Manuscript accepted by Neurocomputing, matlab code is available from https://github.com/qizhust/HLRSalienc

    Relative Saliency and Ranking: Models, Metrics, Data, and Benchmarks

    Full text link
    Salient object detection is a problem that has been considered in detail and \textcolor{black}{many solutions have been proposed}. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. \textcolor{black}{The source code and data are publicly available via our project page:} \textrm{\href{https://ryersonvisionlab.github.io/cocosalrank.html}{ryersonvisionlab.github.io/cocosalrank}}Comment: Accepted to Transaction on Pattern Analysis and Machine Intelligence. arXiv admin note: substantial text overlap with arXiv:1803.0508

    Deep Reasoning with Multi-Scale Context for Salient Object Detection

    Full text link
    To detect salient objects accurately, existing methods usually design complex backbone network architectures to learn and fuse powerful features. However, the saliency inference module that performs saliency prediction from the fused features receives much less attention on its architecture design and typically adopts only a few fully convolutional layers. In this paper, we find the limited capacity of the saliency inference module indeed makes a fundamental performance bottleneck, and enhancing its capacity is critical for obtaining better saliency prediction. Correspondingly, we propose a deep yet light-weight saliency inference module that adopts a multi-dilated depth-wise convolution architecture. Such a deep inference module, though with simple architecture, can directly perform reasoning about salient objects from the multi-scale convolutional features fast, and give superior salient object detection performance with less computational cost. To our best knowledge, we are the first to reveal the importance of the inference module for salient object detection, and present a novel architecture design with attractive efficiency and accuracy. Extensive experimental evaluations demonstrate that our simple framework performs favorably compared with the state-of-the-art methods with complex backbone design.Comment: 10 pages, 8 figures, 3 tabl

    Ro-SOS: Metric Expression Network (MEnet) for Robust Salient Object Segmentation

    Full text link
    Although deep CNNs have brought significant improvement to image saliency detection, most CNN based models are sensitive to distortion such as compression and noise. In this paper, we propose an end-to-end generic salient object segmentation model called Metric Expression Network (MEnet) to deal with saliency detection with the tolerance of distortion. Within MEnet, a new topological metric space is constructed, whose implicit metric is determined by the deep network. As a result, we manage to group all the pixels in the observed image semantically within this latent space into two regions: a salient region and a non-salient region. With this architecture, all feature extractions are carried out at the pixel level, enabling fine granularity of output boundaries of the salient objects. What's more, we try to give a general analysis for the noise robustness of the network in the sense of Lipschitz and Jacobian literature. Experiments demonstrate that robust salient maps facilitating object segmentation can be generated by the proposed metric. Tests on several public benchmarks show that MEnet has achieved desirable performance. Furthermore, by direct computation and measuring the robustness, the proposed method outperforms previous CNN-based methods on distorted inputs.Comment: This version: 11 pages (12 with reference), 12 figures, 5 table; Version 1: 7 pages,7 figures, 4 tables; The paper for version 1 has been accepted by International Joint Conference on Artificial Intelligence (IJCAI),201
    • …
    corecore