156 research outputs found

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort

    Unsharp Mask Guided Filtering

    Get PDF

    Unsharp Mask Guided Filtering

    Get PDF
    The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering by means of an additional guidance image. Where classical guided filters transfer structures using hand-designed functions, recent guided filters have been considerably advanced through parametric learning of deep networks. The state-of-the-art leverages deep networks to estimate the two core coefficients of the guided filter. In this work, we posit that simultaneously estimating both coefficients is suboptimal, resulting in halo artifacts and structure inconsistencies. Inspired by unsharp masking, a classical technique for edge enhancement that requires only a single coefficient, we propose a new and simplified formulation of the guided filter. Our formulation enjoys a filtering prior from a low-pass filter and enables explicit structure transfer by estimating a single coefficient. Based on our proposed formulation, we introduce a successive guided filtering network, which provides multiple filtering results from a single network, allowing for a trade-off between accuracy and efficiency. Extensive ablations, comparisons and analysis show the effectiveness and efficiency of our formulation and network, resulting in state-of-the-art results across filtering tasks like upsampling, denoising, and cross-modality filtering. Code is available at \url{https://github.com/shizenglin/Unsharp-Mask-Guided-Filtering}.Comment: IEEE Transactions on Image Processing, 202

    Image Denoising: Invertible and General Denoising Frameworks

    Get PDF
    The widespread use of digital cameras has resulted in a massive number of images being taken every day. However, due to the limitations of sensors and environments such as light conditions, the images are usually contaminated by noise. Obtaining visually clean images are essential for the accuracy of downstream high-level vision tasks. Thus, denoising is a crucial preprocessing step. A fundamental challenge in image denoising is to restore recognizable frequencies in edge and fine-scaled texture regions. Traditional methods usually employ hand-crafted priors to enhance the restoration of these high frequency regions, which seem to be omitted in current deep learning models. We explored whether the clean gradients can be utilized in deep networks as a prior as well as how to incorporate this prior in the networks to boost recovery of missing or obscured picture elements. We present results showing that fusing the pre-denoised images' gradient in the shallow layer contributes to recovering better edges and textures. We also propose a regularization loss term to ensure that the reconstructed images' gradients are close to the clean gradients. Both techniques are indispensable for enhancing the restored image frequencies. We also studied how to make the network preserve input information for better restoration of the high-frequency details. According to the definition of mutual information, we presented that invertibility is indispensable for information losslessness. Then, we proposed the Invertible Restoring Autoencoder (IRAE) network, a multiscale invertible encoder-decoder network. The superiority of this network was verified on three different low-level tasks, image denoising, JPEG image decompression and image inpainting. IRAE showed a good direction to explore more invertible architectures for image restoration. We attempted to further reduce the model size of invertible restoration networks. Our intuition was to use the same learned parameters to encode the noisy images in the forward pass and reconstruct the clean images in the backward pass. However, existing invertible networks use the same distribution for both the input and output obtained in the reversed pass. For our noise removal purpose, the input is noisy, but the reversed output is clean, following two different distributions. It was challenging to design lightweight invertible architectures for denoising. We presented InvDN, converting the noisy input to a clean low-resolution image and a noisy latent representation. To address the challenge mentioned above, we replaced the noisy representation with a clean one random sampled from Gaussian during the reverse pass. InvDN achieved state-of-the-art on real image denoising with much fewer parameters and less run time than existing state-of-the-art models. In addition, InvDN could also generate new noisy images for data augmentation. We also rethought image denoising from a novel aspect and introduced a more general denoising framework. Our framework utilized invertible networks to learn a noisy image distribution, which could be considered as the joint distribution of clean content and noise. The noisy input was mapped to representations in the latent space. A novel disentanglement strategy was applied to the latent representations to obtain the representations for the clean content, which were passed to the reversed network to get the clean image. Since this concept was a novel attempt, we also explored different data augmentation and training strategies for this framework. The proposed FDN was trained and tested from simple to complex tasks on distribution-clear class-specific synthetic noisy datasets, more general remote sensing datasets, and real noisy datasets and achieved competitive results with fewer parameters and faster speed. This work contributed a novel perspective and potential direction to design low-level task models in the future

    Auto-Denoising for EEG Signals Using Generative Adversarial Network.

    Full text link
    The brain-computer interface (BCI) has many applications in various fields. In EEG-based research, an essential step is signal denoising. In this paper, a generative adversarial network (GAN)-based denoising method is proposed to denoise the multichannel EEG signal automatically. A new loss function is defined to ensure that the filtered signal can retain as much effective original information and energy as possible. This model can imitate and integrate artificial denoising methods, which reduces processing time; hence it can be used for a large amount of data processing. Compared to other neural network denoising models, the proposed model has one more discriminator, which always judges whether the noise is filtered out. The generator is constantly changing the denoising way. To ensure the GAN model generates EEG signals stably, a new normalization method called sample entropy threshold and energy threshold-based (SETET) normalization is proposed to check the abnormal signals and limit the range of EEG signals. After the denoising system is established, although the denoising model uses the different subjects' data for training, it can still apply to the new subjects' data denoising. The experiments discussed in this paper employ the HaLT public dataset. Correlation and root mean square error (RMSE) are used as evaluation criteria. Results reveal that the proposed automatic GAN denoising network achieves the same performance as the manual hybrid artificial denoising method. Moreover, the GAN network makes the denoising process automatic, representing a significant reduction in time

    Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature Modulation

    Get PDF
    corecore