1,595 research outputs found

    Multi-scale Transformer Network with Edge-aware Pre-training for Cross-Modality MR Image Synthesis

    Full text link
    Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Further, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70%70\% of all available paired data. Our code will be publicly available at https://github.com/lyhkevin/MT-Net.Comment: 13 pages, 15 figure

    A Novel Confidence Induced Class Activation Mapping for MRI Brain Tumor Segmentation

    Full text link
    Magnetic resonance imaging (MRI) is a commonly used technique for brain tumor segmentation, which is critical for evaluating patients and planning treatment. To make the labeling process less laborious and dependent on expertise, weakly-supervised semantic segmentation (WSSS) methods using class activation mapping (CAM) have been proposed. However, current CAM-based WSSS methods generate the object localization map using internal neural network information, such as gradient or trainable parameters, which can lead to suboptimal solutions. To address these issues, we propose the confidence-induced CAM (Cfd-CAM), which calculates the weight of each feature map by using the confidence of the target class. Our experiments on two brain tumor datasets show that Cfd-CAM outperforms existing state-of-the-art methods under the same level of supervision. Overall, our proposed Cfd-CAM approach improves the accuracy of brain tumor segmentation and may provide valuable insights for developing better WSSS methods for other medical imaging tasks

    Recent Progress in Transformer-based Medical Image Analysis

    Full text link
    The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.Comment: Computers in Biology and Medicine Accepte
    • …
    corecore