3 research outputs found

    QoS based Radio Resource Management Techniques for Next Generation MU-MIMO WLANs: A Survey

    Get PDF
    IEEE 802.11 based Wireless Local Area Networks (WLANs) have emerged as a popular candidate that offers Internet services for wireless users. The demand of data traffic is increasing every day due to the increase in the use of multimedia applications, such as digital audio, video, and online gaming. With the inclusion of Physical Layer (PHY) technologies, such as the OFDM and MIMO, the current 802.11ac WLANs are claiming Gigabit speeds. Hence, the existing Medium Access Control (MAC) must be in a suitable position to convert the offered PHY data rates for efficient throughput. Further, the integration of cellular networks with WLANs requires unique changes at MAC layer. It is highly required to preserve the Quality of Service (QoS) in these scenarios. Fundamentally, many QoS issues arise from the problem of effective Radio Resource Management (RRM). Although IEEE 802.11 has lifted PHY layer aspects, there is a necessity to investigate MAC layer issues, such as resource utilization, scheduling, admission control and congestion control. In this survey, a literature overview of these techniques, namely the resource allocation and scheduling algorithms are briefly discussed in connection with the QoS at MAC layer. Further, some anticipated enhancements proposed for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) WLANs are discussed

    Design and optimisation of a low cost Cognitive Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) have been touted as the most promising wireless technology in providing high-bandwidth Internet access to rural, remote and under-served areas, with relatively lower investment cost as compared to traditional access networks. WMNs structurally comprise of mesh routers and mesh clients. Furthermore, WMNs have an envisaged ability to provide a heterogeneous network system that integrates wireless technologies such as IEEE 802.22 WRAN, IEEE 802.16 WiMAX, IEEE 802.11 Wi-Fi, Blue-tooth etc. The recent proliferation of new devices on the market such as smart phones and, tablets, and the growing number of resource hungry applications has placed a serious strain on spectrum availability which gives rise to the spectrum scarcity problem. The spectrum scarcity problem essentially results in increased spectrum prices that hamper the growth and efficient performance of WMNs as well as subsequent transformation of WMN into the envisaged next generation networks. Recent developments in TV white space communications technology and the emergence of Cognitive radio devices that facilitate Dynamic Spectrum Access (DSA) have provided an opportunity to mitigate the spectrum scarcity problem. To solve the scarcity problem, this thesis reconsiders the classical Network Engineering (NE) and Traffic Engineering (TE) problems to objectively design a low cost Cognitive Mesh network that promotes efficient resources utilization and thereby achieve better Quality of Service (QoS) levels
    corecore