1,268 research outputs found

    Multi-Pitch Estimation Exploiting Block Sparsity

    Get PDF
    We study the problem of estimating the fundamental frequencies of a signal containing multiple harmonically related sinusoidal components using a novel block sparse signal representation. An efficient algorithm for solving the resulting optimization problem is devised exploiting a novel variable step-size alternating direction method of multipliers (ADMM). The resulting algorithm has guaranteed convergence and shows notable robustness to the f 0 vs f0/2f0/2 ambiguity problem. The superiority of the proposed method, as compared to earlier presented estimation techniques, is demonstrated using both simulated and measured audio signals, clearly indicating the preferable performance of the proposed technique

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal

    An Adaptive Penalty Approach to Multi-Pitch Estimation

    Get PDF
    This work treats multi-pitch estimation, and in particular the common misclassification issue wherein the pitch at half of the true fundamental frequency, here referred to as a sub-octave, is chosen instead of the true pitch. Extending on current methods which use an extension of the Group LASSO for pitch estimation, this work introduces an adaptive total variation penalty, which both enforce group- and block sparsity, and deal with errors due to sub-octaves. The method is shown to outperform current state-of-the-art sparse methods, where the model orders are unknown, while also requiring fewer tuning parameters than these. The method is also shown to outperform several conventional pitch estimation methods, even when these are virtued with oracle model orders

    Generalized Sparse Covariance-based Estimation

    Full text link
    In this work, we extend the sparse iterative covariance-based estimator (SPICE), by generalizing the formulation to allow for different norm constraints on the signal and noise parameters in the covariance model. For a given norm, the resulting extended SPICE method enjoys the same benefits as the regular SPICE method, including being hyper-parameter free, although the choice of norms are shown to govern the sparsity in the resulting solution. Furthermore, we show that solving the extended SPICE method is equivalent to solving a penalized regression problem, which provides an alternative interpretation of the proposed method and a deeper insight on the differences in sparsity between the extended and the original SPICE formulation. We examine the performance of the method for different choices of norms, and compare the results to the original SPICE method, showing the benefits of using the extended formulation. We also provide two ways of solving the extended SPICE method; one grid-based method, for which an efficient implementation is given, and a gridless method for the sinusoidal case, which results in a semi-definite programming problem

    Sparse Chroma Estimation for Harmonic Audio

    Get PDF
    This work treats the estimation of the chromagram for harmonic audio signals using a block sparse reconstruction framework. Chroma has been used for decades as a key tool in audio analysis, and is typically formed using a Fourier-based framework that maps the fundamental frequency of a musical tone to its corresponding chroma. Such an approach often leads to problems with tone ambiguity, which we avoid by taking into account the harmonic structure and perceptional attributes in music. The performance of the proposed method is evaluated using real audio files, clearly showing preferable performance as compared to other commonly used methods

    A Parametric Method for Multi-Pitch Estimation

    Get PDF
    This thesis proposes a novel method for multi-pitch estimation. The method operates by posing pitch estimation as a sparse recovery problem which is solved using convex optimization techniques. In that respect, it is an extension of an earlier presented estimation method based on the group-LASSO. However, by introducing an adaptive total variation penalty, the proposed method requires fewer user supplied parameters, thereby simplifying the estimation procedure. The method is shown to have comparable to superior performance in low noise environments when compared to three standard multi-pitch estimation methods as well as the predecessor method. Also presented is a scheme for automatic selection of the regularization parameters, thereby making the method more user friendly. Used together with this scheme, the proposed method is shown to yield accurate, although not statistically efficent, pitch Estimates when evaluated on synthetic speech data

    Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    Get PDF
    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mixture, nor on the number of harmonics in each source. The estimator is formulated using a sparse signal framework, and an efficient implementation using the ADMM is introduced. Numerical simulations indicate the preferable performance of the proposed method as compared to several commonly used multi-channel single pitch estimators, and a commonly used multi-pitch estimator
    corecore