23,984 research outputs found

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Multi-Period Trading via Convex Optimization

    Full text link
    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single-period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper

    Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection

    Full text link
    The classical dynamic programming-based optimal stochastic control methods fail to cope with nonseparable dynamic optimization problems as the principle of optimality no longer applies in such situations. Among these notorious nonseparable problems, the dynamic mean-variance portfolio selection formulation had posted a great challenge to our research community until recently. A few solution methods, including the embedding scheme, have been developed in the last decade to solve the dynamic mean-variance portfolio selection formulation successfully. We propose in this paper a novel mean-field framework that offers a more efficient modeling tool and a more accurate solution scheme in tackling directly the issue of nonseparability and deriving the optimal policies analytically for the multi-period mean-variance-type portfolio selection problems

    A dynamic programming approach to constrained portfolios

    Get PDF
    This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of inter¬mediate wealth and/or consumption

    Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure

    Full text link
    The discrete-time mean-variance portfolio selection formulation, a representative of general dynamic mean-risk portfolio selection problems, does not satisfy time consistency in efficiency (TCIE) in general, i.e., a truncated pre-committed efficient policy may become inefficient when considering the corresponding truncated problem, thus stimulating investors' irrational investment behavior. We investigate analytically effects of portfolio constraints on time consistency of efficiency for convex cone constrained markets. More specifically, we derive the semi-analytical expressions for the pre-committed efficient mean-variance policy and the minimum-variance signed supermartingale measure (VSSM) and reveal their close relationship. Our analysis shows that the pre-committed discrete-time efficient mean-variance policy satisfies TCIE if and only if the conditional expectation of VSSM's density (with respect to the original probability measure) is nonnegative, or once the conditional expectation becomes negative, it remains at the same negative value until the terminal time. Our findings indicate that the property of time consistency in efficiency only depends on the basic market setting, including portfolio constraints, and this fact motivates us to establish a general solution framework in constructing TCIE dynamic portfolio selection problem formulations by introducing suitable portfolio constraints
    corecore