4 research outputs found

    Machine Learning in Fetal Cardiology: What to Expect

    Get PDF
    In fetal cardiology, imaging (especially echocardiography) has demonstrated to help in the diagnosis and monitoring of fetuses with a compromised cardiovascular system potentially associated with several fetal conditions. Different ultrasound approaches are currently used to evaluate fetal cardiac structure and function, including conventional 2-D imaging and M-mode and tissue Doppler imaging among others. However, assessment of the fetal heart is still challenging mainly due to involuntary movements of the fetus, the small size of the heart, and the lack of expertise in fetal echocardiography of some sonographers. Therefore, the use of new technologies to improve the primary acquired images, to help extract measurements, or to aid in the diagnosis of cardiac abnormalities is of great importance for optimal assessment of the fetal heart. Machine leaning (ML) is a computer science discipline focused on teaching a computer to perform tasks with specific goals without explicitly programming the rules on how to perform this task. In this review we provide a brief overview on the potential of ML techniques to improve the evaluation of fetal cardiac function by optimizing image acquisition and quantification/segmentation, as well as aid in improving the prenatal diagnoses of fetal cardiac remodeling and abnormalities

    Multi-organ detection in 3D fetal ultrasound with machine learning

    No full text
    3D ultrasound (US) is a promising technique to perform automatic extraction of standard planes for fetal anatomy assessment. This requires prior organ localization, which is difficult to obtain with direct learning approaches because of the high variability in fetus size and orientation in US volumes. In this paper, we propose a methodology to overcome this spatial variability issue by scaling and automatically aligning volumes in a common 3D reference coordinate system. This preprocessing allows the organ detection algorithm to learn features that only encodes the anatomical variability while discarding the fetus pose. All steps of the approach are evaluated on 126 manually annotated volumes, with an overall mean localization error of 11.9 mm, showing the feasibility of multi-organ detection in 3D fetal US with machine learning

    Multi-organ detection in 3D fetal ultrasound with machine learning

    No full text
    3D ultrasound (US) is a promising technique to perform automatic extraction of standard planes for fetal anatomy assessment. This requires prior organ localization, which is difficult to obtain with direct learning approaches because of the high variability in fetus size and orientation in US volumes. In this paper, we propose a methodology to overcome this spatial variability issue by scaling and automatically aligning volumes in a common 3D reference coordinate system. This preprocessing allows the organ detection algorithm to learn features that only encodes the anatomical variability while discarding the fetus pose. All steps of the approach are evaluated on 126 manually annotated volumes, with an overall mean localization error of 11.9 mm, showing the feasibility of multi-organ detection in 3D fetal US with machine learning
    corecore