343 research outputs found

    Objective quality prediction of image retargeting algorithms

    Get PDF
    Quality assessment of image retargeting results is useful when comparing different methods. However, performing the necessary user studies is a long, cumbersome process. In this paper, we propose a simple yet efficient objective quality assessment method based on five key factors: i) preservation of salient regions; ii) analysis of the influence of artifacts; iii) preservation of the global structure of the image; iv) compliance with well-established aesthetics rules; and v) preservation of symmetry. Experiments on the RetargetMe benchmark, as well as a comprehensive additional user study, demonstrate that our proposed objective quality assessment method outperforms other existing metrics, while correlating better with human judgements. This makes our metric a good predictor of subjective preference

    A deep evaluator for image retargeting quality by geometrical and contextual interaction

    Get PDF
    An image is compressed or stretched during the multidevice displaying, which will have a very big impact on perception quality. In order to solve this problem, a variety of image retargeting methods have been proposed for the retargeting process. However, how to evaluate the results of different image retargeting is a very critical issue. In various application systems, the subjective evaluation method cannot be applied on a large scale. So we put this problem in the accurate objective-quality evaluation. Currently, most of the image retargeting quality assessment algorithms use simple regression methods as the last step to obtain the evaluation result, which are not corresponding with the perception simulation in the human vision system (HVS). In this paper, a deep quality evaluator for image retargeting based on the segmented stacked AutoEnCoder (SAE) is proposed. Through the help of regularization, the designed deep learning framework can solve the overfitting problem. The main contributions in this framework are to simulate the perception of retargeted images in HVS. Especially, it trains two separated SAE models based on geometrical shape and content matching. Then, the weighting schemes can be used to combine the obtained scores from two models. Experimental results in three well-known databases show that our method can achieve better performance than traditional methods in evaluating different image retargeting results

    Supervised Deep Learning for Content-Aware Image Retargeting with Fourier Convolutions

    Full text link
    Image retargeting aims to alter the size of the image with attention to the contents. One of the main obstacles to training deep learning models for image retargeting is the need for a vast labeled dataset. Labeled datasets are unavailable for training deep learning models in the image retargeting tasks. As a result, we present a new supervised approach for training deep learning models. We use the original images as ground truth and create inputs for the model by resizing and cropping the original images. A second challenge is generating different image sizes in inference time. However, regular convolutional neural networks cannot generate images of different sizes than the input image. To address this issue, we introduced a new method for supervised learning. In our approach, a mask is generated to show the desired size and location of the object. Then the mask and the input image are fed to the network. Comparing image retargeting methods and our proposed method demonstrates the model's ability to produce high-quality retargeted images. Afterward, we compute the image quality assessment score for each output image based on different techniques and illustrate the effectiveness of our approach.Comment: 18 pages, 5 figure
    corecore