2 research outputs found

    RFID-Based Vehicle Positioning and Its Applications in Connected Vehicles

    Get PDF
    This paper proposed an RFID-based vehicle positioning approach to facilitate connected vehicles applications. When a vehicle passes over an RFID tag, the vehicle position is given by the accurate position stored in the tag. At locations without RFID coverage, the vehicle position is estimated from the most recent tag location using a kinematics integration algorithm till updates from the next tag. The accuracy of RFID positioning is verified empirically in two independent ways with one using radar and the other a photoelectric switch. The former is designed to verify whether the dynamic position obtained from RFID tags matches the position measured by radar that is regarded as accurate. The latter aims to verify whether the position estimated from the kinematics integration matches the position obtained from RFID tags. Both means supports the accuracy of RFID-based positioning. As a supplement to GPS which suffers from issues such as inaccuracy and loss of signal, RFID positioning is promising in facilitating connected vehicles applications. Two conceptual applications are provided here with one in vehicle operational control and the other in Level IV intersection control

    Modelling Stop Intersection Approaches using Gaussian Processes

    Get PDF
    International audienceEach driver reacts differently to the same traffic conditions, however, most Advanced Driving Assistant Systems (ADAS) assume that all drivers are the same. This paper proposes a method to learn and to model the velocity profile that the driver follows as the vehicle decelerates towards a stop intersection. Gaussian Processes (GP), a machine learning method for non-linear regressions are used to model the velocity profiles. It is shown that GP are well adapted for such an application, using data recorded in real traffic conditions. It consists of the generation of a normally distributed speed, given a position on the road. By comparison with generic velocity profiles, benefits of using individual driver patterns for ADAS issues are presented
    corecore