8 research outputs found

    Multi-modality sensor data classification with selective attention

    Full text link
    © 2018 International Joint Conferences on Artificial Intelligence. All right reserved. Multimodal wearable sensor data classification plays an important role in ubiquitous computing and has a wide range of applications in scenarios from healthcare to entertainment. However, most existing work in this field employs domain-specific approaches and is thus ineffective in complex situations where multi-modality sensor data are collected. Moreover, the wearable sensor data are less informative than the conventional data such as texts or images. In this paper, to improve the adaptability of such classification methods across different application domains, we turn this classification task into a game and apply a deep reinforcement learning scheme to deal with complex situations dynamically. Additionally, we introduce a selective attention mechanism into the reinforcement learning scheme to focus on the crucial dimensions of the data. This mechanism helps to capture extra information from the signal and thus it is able to significantly improve the discriminative power of the classifier. We carry out several experiments on three wearable sensor datasets and demonstrate the competitive performance of the proposed approach compared to several state-of-the-art baselines

    Adversarial Variational Embedding for Robust Semi-supervised Learning

    Full text link
    Semi-supervised learning is sought for leveraging the unlabelled data when labelled data is difficult or expensive to acquire. Deep generative models (e.g., Variational Autoencoder (VAE)) and semisupervised Generative Adversarial Networks (GANs) have recently shown promising performance in semi-supervised classification for the excellent discriminative representing ability. However, the latent code learned by the traditional VAE is not exclusive (repeatable) for a specific input sample, which prevents it from excellent classification performance. In particular, the learned latent representation depends on a non-exclusive component which is stochastically sampled from the prior distribution. Moreover, the semi-supervised GAN models generate data from pre-defined distribution (e.g., Gaussian noises) which is independent of the input data distribution and may obstruct the convergence and is difficult to control the distribution of the generated data. To address the aforementioned issues, we propose a novel Adversarial Variational Embedding (AVAE) framework for robust and effective semi-supervised learning to leverage both the advantage of GAN as a high quality generative model and VAE as a posterior distribution learner. The proposed approach first produces an exclusive latent code by the model which we call VAE++, and meanwhile, provides a meaningful prior distribution for the generator of GAN. The proposed approach is evaluated over four different real-world applications and we show that our method outperforms the state-of-the-art models, which confirms that the combination of VAE++ and GAN can provide significant improvements in semisupervised classification.Comment: 9 pages, Accepted by Research Track in KDD 201

    Know your mind: Adaptive cognitive activity recognition with reinforced CNN

    Full text link
    © 2019 IEEE. Electroencephalography (EEG) signals reflect and measure activities in certain brain areas. Its zero clinical risk and easy-to-use features make it a good choice of providing insights into the cognitive process. However, effective analysis of time-varying EEG signals remains challenging. First, EEG signal processing and feature engineering are time-consuming and highly rely on expert knowledge, and most existing studies focus on domain-specific classification algorithms, which may not apply to other domains. Second, EEG signals usually have low signal-to-noise ratios and are more chaotic than other sensor signals. In this regard, we propose a generic EEG-based cognitive activity recognition framework that can adaptively support a wide range of cognitive applications to address the above issues. The framework uses a reinforced selective attention model to choose the characteristic information among raw EEG signals automatically. It employs a convolutional mapping operation to dynamically transform the selected information into a feature space to uncover the implicit spatial dependency of EEG sample distribution. We demonstrate the effectiveness of the framework under three representative scenarios: intention recognition with motor imagery EEG, person identification, and neurological diagnosis, and further evaluate it on three widely used public datasets. The experimental results show our framework outperforms multiple state-of-the-art baselines and achieves competitive accuracy on all the datasets while achieving low latency and high resilience in handling complex EEG signals across various domains. The results confirm the suitability of the proposed generic approach for a range of problems in the realm of brain-computer Interface applications

    Game Theory Solutions in Sensor-Based Human Activity Recognition: A Review

    Full text link
    The Human Activity Recognition (HAR) tasks automatically identify human activities using the sensor data, which has numerous applications in healthcare, sports, security, and human-computer interaction. Despite significant advances in HAR, critical challenges still exist. Game theory has emerged as a promising solution to address these challenges in machine learning problems including HAR. However, there is a lack of research work on applying game theory solutions to the HAR problems. This review paper explores the potential of game theory as a solution for HAR tasks, and bridges the gap between game theory and HAR research work by suggesting novel game-theoretic approaches for HAR problems. The contributions of this work include exploring how game theory can improve the accuracy and robustness of HAR models, investigating how game-theoretic concepts can optimize recognition algorithms, and discussing the game-theoretic approaches against the existing HAR methods. The objective is to provide insights into the potential of game theory as a solution for sensor-based HAR, and contribute to develop a more accurate and efficient recognition system in the future research directions

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions
    corecore