3,953 research outputs found

    Holdable Haptic Device for 4-DOF Motion Guidance

    Full text link
    Hand-held haptic devices can allow for greater freedom of motion and larger workspaces than traditional grounded haptic devices. They can also provide more compelling haptic sensations to the users' fingertips than many wearable haptic devices because reaction forces can be distributed over a larger area of skin far away from the stimulation site. This paper presents a hand-held kinesthetic gripper that provides guidance cues in four degrees of freedom (DOF). 2-DOF tangential forces on the thumb and index finger combine to create cues to translate or rotate the hand. We demonstrate the device's capabilities in a three-part user study. First, users moved their hands in response to haptic cues before receiving instruction or training. Then, they trained on cues in eight directions in a forced-choice task. Finally, they repeated the first part, now knowing what each cue intended to convey. Users were able to discriminate each cue over 90% of the time. Users moved correctly in response to the guidance cues both before and after the training and indicated that the cues were easy to follow. The results show promise for holdable kinesthetic devices in haptic feedback and guidance for applications such as virtual reality, medical training, and teleoperation.Comment: Submitted to IEEE World Haptics Conference 201

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Impact of haptic 'touching' technology on cultural applications

    Get PDF
    No abstract available

    The addition of the haptic modality to the virtual reality modeling language

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 40-43).by Evan F. Wies.S.B.and M.Eng

    A Desktop Networked Haptic VR Interface for Mechanical Assembly

    Get PDF
    This paper presents the development of a PC-based 3D human computer interface for virtual assembly applications. This system is capable of importing complex CAD (Computer Aided Design) models, rendering them in stereo, and implementing haptic force feedback for realistic part interaction in virtual environments. Such an application will facilitate wider acceptance of the use of a VR interface for prototyping assembly tasks. This interface provides both visual and haptic feedback to the user, while allowing assembly tasks to be performed on a desktop virtual environment. The network module has the ability to communicate with multiple VR systems (such as CAVE etc.) at geographically dispersed locations using a non-dedicated network channel. The potential benefits of such a system include identification of assembly issues early in the design process where changes can be made easily, resulting in a more efficient and less costly product design process
    • …
    corecore