239 research outputs found

    Knowing Where to Look? Analysis on Attention of Visual Question Answering System

    Full text link
    Attention mechanisms have been widely used in Visual Question Answering (VQA) solutions due to their capacity to model deep cross-domain interactions. Analyzing attention maps offers us a perspective to find out limitations of current VQA systems and an opportunity to further improve them. In this paper, we select two state-of-the-art VQA approaches with attention mechanisms to study their robustness and disadvantages by visualizing and analyzing their estimated attention maps. We find that both methods are sensitive to features, and simultaneously, they perform badly for counting and multi-object related questions. We believe that the findings and analytical method will help researchers identify crucial challenges on the way to improve their own VQA systems.Comment: ECCV SiVL Workshop pape

    Dual Recurrent Attention Units for Visual Question Answering

    Full text link
    Visual Question Answering (VQA) requires AI models to comprehend data in two domains, vision and text. Current state-of-the-art models use learned attention mechanisms to extract relevant information from the input domains to answer a certain question. Thus, robust attention mechanisms are essential for powerful VQA models. In this paper, we propose a recurrent attention mechanism and show its benefits compared to the traditional convolutional approach. We perform two ablation studies to evaluate recurrent attention. First, we introduce a baseline VQA model with visual attention and test the performance difference between convolutional and recurrent attention on the VQA 2.0 dataset. Secondly, we design an architecture for VQA which utilizes dual (textual and visual) Recurrent Attention Units (RAUs). Using this model, we show the effect of all possible combinations of recurrent and convolutional dual attention. Our single model outperforms the first place winner on the VQA 2016 challenge and to the best of our knowledge, it is the second best performing single model on the VQA 1.0 dataset. Furthermore, our model noticeably improves upon the winner of the VQA 2017 challenge. Moreover, we experiment replacing attention mechanisms in state-of-the-art models with our RAUs and show increased performance.Comment: 8 pages, 5 figure

    Reciprocal Attention Fusion for Visual Question Answering

    Full text link
    Existing attention mechanisms either attend to local image grid or object level features for Visual Question Answering (VQA). Motivated by the observation that questions can relate to both object instances and their parts, we propose a novel attention mechanism that jointly considers reciprocal relationships between the two levels of visual details. The bottom-up attention thus generated is further coalesced with the top-down information to only focus on the scene elements that are most relevant to a given question. Our design hierarchically fuses multi-modal information i.e., language, object- and gird-level features, through an efficient tensor decomposition scheme. The proposed model improves the state-of-the-art single model performances from 67.9% to 68.2% on VQAv1 and from 65.7% to 67.4% on VQAv2, demonstrating a significant boost.Comment: To appear in the British Machine Vision Conference (BMVC), September 201

    Learning Visual Knowledge Memory Networks for Visual Question Answering

    Full text link
    Visual question answering (VQA) requires joint comprehension of images and natural language questions, where many questions can't be directly or clearly answered from visual content but require reasoning from structured human knowledge with confirmation from visual content. This paper proposes visual knowledge memory network (VKMN) to address this issue, which seamlessly incorporates structured human knowledge and deep visual features into memory networks in an end-to-end learning framework. Comparing to existing methods for leveraging external knowledge for supporting VQA, this paper stresses more on two missing mechanisms. First is the mechanism for integrating visual contents with knowledge facts. VKMN handles this issue by embedding knowledge triples (subject, relation, target) and deep visual features jointly into the visual knowledge features. Second is the mechanism for handling multiple knowledge facts expanding from question and answer pairs. VKMN stores joint embedding using key-value pair structure in the memory networks so that it is easy to handle multiple facts. Experiments show that the proposed method achieves promising results on both VQA v1.0 and v2.0 benchmarks, while outperforms state-of-the-art methods on the knowledge-reasoning related questions.Comment: Supplementary to CVPR 2018 versio

    Progressive Attention Memory Network for Movie Story Question Answering

    Full text link
    This paper proposes the progressive attention memory network (PAMN) for movie story question answering (QA). Movie story QA is challenging compared to VQA in two aspects: (1) pinpointing the temporal parts relevant to answer the question is difficult as the movies are typically longer than an hour, (2) it has both video and subtitle where different questions require different modality to infer the answer. To overcome these challenges, PAMN involves three main features: (1) progressive attention mechanism that utilizes cues from both question and answer to progressively prune out irrelevant temporal parts in memory, (2) dynamic modality fusion that adaptively determines the contribution of each modality for answering the current question, and (3) belief correction answering scheme that successively corrects the prediction score on each candidate answer. Experiments on publicly available benchmark datasets, MovieQA and TVQA, demonstrate that each feature contributes to our movie story QA architecture, PAMN, and improves performance to achieve the state-of-the-art result. Qualitative analysis by visualizing the inference mechanism of PAMN is also provided.Comment: CVPR 2019, Accepte

    Inverse Visual Question Answering with Multi-Level Attentions

    Full text link
    In this paper, we propose a novel deep multi-level attention model to address inverse visual question answering. The proposed model generates regional visual and semantic features at the object level and then enhances them with the answer cue by using attention mechanisms. Two levels of multiple attentions are employed in the model, including the dual attention at the partial question encoding step and the dynamic attention at the next question word generation step. We evaluate the proposed model on the VQA V1 dataset. It demonstrates state-of-the-art performance in terms of multiple commonly used metrics

    An Improved Attention for Visual Question Answering

    Full text link
    We consider the problem of Visual Question Answering (VQA). Given an image and a free-form, open-ended, question, expressed in natural language, the goal of VQA system is to provide accurate answer to this question with respect to the image. The task is challenging because it requires simultaneous and intricate understanding of both visual and textual information. Attention, which captures intra- and inter-modal dependencies, has emerged as perhaps the most widely used mechanism for addressing these challenges. In this paper, we propose an improved attention-based architecture to solve VQA. We incorporate an Attention on Attention (AoA) module within encoder-decoder framework, which is able to determine the relation between attention results and queries. Attention module generates weighted average for each query. On the other hand, AoA module first generates an information vector and an attention gate using attention results and current context; and then adds another attention to generate final attended information by multiplying the two. We also propose multimodal fusion module to combine both visual and textual information. The goal of this fusion module is to dynamically decide how much information should be considered from each modality. Extensive experiments on VQA-v2 benchmark dataset show that our method achieves the state-of-the-art performance.Comment: 8 page

    Accuracy vs. Complexity: A Trade-off in Visual Question Answering Models

    Full text link
    Visual Question Answering (VQA) has emerged as a Visual Turing Test to validate the reasoning ability of AI agents. The pivot to existing VQA models is the joint embedding that is learned by combining the visual features from an image and the semantic features from a given question. Consequently, a large body of literature has focused on developing complex joint embedding strategies coupled with visual attention mechanisms to effectively capture the interplay between these two modalities. However, modelling the visual and semantic features in a high dimensional (joint embedding) space is computationally expensive, and more complex models often result in trivial improvements in the VQA accuracy. In this work, we systematically study the trade-off between the model complexity and the performance on the VQA task. VQA models have a diverse architecture comprising of pre-processing, feature extraction, multimodal fusion, attention and final classification stages. We specifically focus on the effect of "multi-modal fusion" in VQA models that is typically the most expensive step in a VQA pipeline. Our thorough experimental evaluation leads us to two proposals, one optimized for minimal complexity and the other one optimized for state-of-the-art VQA performance

    Multimodal Unified Attention Networks for Vision-and-Language Interactions

    Full text link
    Learning an effective attention mechanism for multimodal data is important in many vision-and-language tasks that require a synergic understanding of both the visual and textual contents. Existing state-of-the-art approaches use co-attention models to associate each visual object (e.g., image region) with each textual object (e.g., query word). Despite the success of these co-attention models, they only model inter-modal interactions while neglecting intra-modal interactions. Here we propose a general `unified attention' model that simultaneously captures the intra- and inter-modal interactions of multimodal features and outputs their corresponding attended representations. By stacking such unified attention blocks in depth, we obtain the deep Multimodal Unified Attention Network (MUAN), which can seamlessly be applied to the visual question answering (VQA) and visual grounding tasks. We evaluate our MUAN models on two VQA datasets and three visual grounding datasets, and the results show that MUAN achieves top-level performance on both tasks without bells and whistles.Comment: 11 pages, 7 figure

    Dynamic Fusion with Intra- and Inter- Modality Attention Flow for Visual Question Answering

    Full text link
    Learning effective fusion of multi-modality features is at the heart of visual question answering. We propose a novel method of dynamically fusing multi-modal features with intra- and inter-modality information flow, which alternatively pass dynamic information between and across the visual and language modalities. It can robustly capture the high-level interactions between language and vision domains, thus significantly improves the performance of visual question answering. We also show that the proposed dynamic intra-modality attention flow conditioned on the other modality can dynamically modulate the intra-modality attention of the target modality, which is vital for multimodality feature fusion. Experimental evaluations on the VQA 2.0 dataset show that the proposed method achieves state-of-the-art VQA performance. Extensive ablation studies are carried out for the comprehensive analysis of the proposed method.Comment: CVPR 2019 ORA
    • …
    corecore