2 research outputs found

    Optimization for Energy Management in the Community Microgrids

    Full text link
    This thesis focuses on improving the energy management strategies for Community Microgrids (CMGs), which are expected to play a crucial role in the future smart grid. CMGs bring many benefits, including increased use of renewable energy, improved reliability, resiliency, and energy efficiency. An Energy Management System (EMS) is a key tool that helps in monitoring, controlling, and optimizing the operations of the CMG in a cost-effective manner. The EMS can include various functionalities like day-ahead generation scheduling, real-time scheduling, uncertainty management, and demand response programs. Generation scheduling in a microgrid is a challenging optimization problem, especially due to the intermittent nature of renewable energy. The power balance constraint, which is the balance between energy demand and generation, is difficult to satisfy due to prediction errors in energy demand and generation. Real-time scheduling, which is based on a shorter prediction horizon, reduces these errors, but the impact of uncertainties cannot be completely eliminated. In regards to demand response programs, it is challenging to design an effective model that motivates customers to voluntarily participate while benefiting the system operator. Mathematical optimization techniques have been widely used to solve power system problems, but their application is limited by the need for specific mathematical properties. Metaheuristic techniques, particularly Evolutionary Algorithms (EAs), have gained popularity for their ability to solve complex and non-linear problems. However, the traditional form of EAs may require significant computational effort for complex energy management problems in the CMG. This thesis aims to enhance the existing methods of EMS in CMGs. Improved techniques are developed for day-ahead generation scheduling, multi-stage real-time scheduling, and demand response implementation. For generation scheduling, the performance of conventional EAs is improved through an efficient heuristic. A new multi-stage scheduling framework is proposed to minimize the impact of uncertainties in real-time operations. In regards to demand response, a memetic algorithm is proposed to solve an incentive-based scheme from the perspective of an aggregator, and a price-based demand response driven by dynamic price optimization is proposed to enhance the electric vehicle hosting capacity. The proposed methods are validated through extensive numerical experiments and comparison with state-of-the-art approaches. The results confirm the effectiveness of the proposed methods in improving energy management in CMGs
    corecore