1,635 research outputs found

    Secure and Privacy-Preserving Cloud-Assisted Computing

    Get PDF
    Smart devices such as smartphones, wearables, and smart appliances collect significant amounts of data and transmit them over the network forming the Internet of Things (IoT). Many applications in our daily lives (e.g., health, smart grid, traffic monitoring) involve IoT devices that often have low computational capabilities. Subsequently, powerful cloud servers are employed to process the data collected from these devices. Nevertheless, security and privacy concerns arise in cloud-assisted computing settings. Collected data can be sensitive, and it is essential to protect their confidentiality. Additionally, outsourcing computations to untrusted cloud servers creates the need to ensure that servers perform the computations as requested and that any misbehavior can be detected, safeguarding security. Cryptographic primitives and protocols are the foundation to design secure and privacy-preserving solutions that address these challenges. This thesis focuses on providing privacy and security guarantees when outsourcing heavy computations on sensitive data to untrusted cloud servers. More concretely, this work: (a) \ua0provides solutions for outsourcing the secure computation of the sum and the product functions in the multi-server, multi-client setting, protecting the sensitive data of the data owners, even against potentially untrusted cloud servers; (b) \ua0provides integrity guarantees for the proposed protocols, by enabling anyone to verify the correctness of the computed function values. More precisely, the employed servers or the clients (depending on the proposed solution) provide specific values which are the proofs that the computed results are correct; (c) \ua0designs decentralized settings, where multiple cloud servers are employed to perform the requested computations as opposed to relying on a single server that might fail or lose connection; (d) \ua0suggests ways to protect individual privacy and provide integrity. More pre- cisely, we propose a verifiable differentially private solution that provides verifiability and avoids any leakage of information regardless of the participa- tion of some individual’s sensitive data in the computation or not

    Role of Digitalization in Election Voting Through Industry 4.0 Enabling Technologies

    Get PDF
    The election voting system is one of the essential pillars of democracy to elect the representative for ruling the country. In the election voting system, there are multiple areas such as detection of fake voters, illegal activities for fake voting, booth capturing, ballot monitoring, etc., in which Industry 4.0 can be adopted for the application of real-time monitoring, intelligent detection, enhancing security and transparency of voting and other data during the voting. According to previous research, there are no studies that have presented the significance of industry 4.0 technologies for improving the electronic voting system from a sustainability standpoint. To overcome the research gap, this study aims to present literature about Industry 4.0 technologies on the election voting system. We examined individual industry enabling technologies such as blockchain, artificial intelligence (AI), cloud computing, and the Internet of Things (IoT) that have the potential to strengthen the infrastructure of the election voting system. Based upon the analysis, the study has discussed and recommended suggestions for the future scope such as: IoT and cloud computing-based automatic systems for the detection of fake voters and updating voter attendance after the verification of the voter identity; AI-based illegal, and fake voting activities detection through vision node; blockchain-inspired system for the data integrity in between voter and election commission and robotic assistance system for guiding the voter and also for detecting disputes in the premises of election booth

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture
    • …
    corecore