4 research outputs found

    Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction

    Full text link
    © 2020 ACM. Cross-platform account matching plays a significant role in social network analytics, and is beneficial for a wide range of applications. However, existing methods either heavily rely on high-quality user generated content (including user profiles) or suffer from data insufficiency problem if only focusing on network topology, which brings researchers into an insoluble dilemma of model selection. In this paper, to address this problem, we propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure in a unified manner. The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information. Moreover, to adapt the proposed method to be capable of handling large-scale social networks, we propose a two-phase space reconciliation mechanism to align the embedding spaces in both network partitioning based parallel training and account matching across different social networks. Extensive experiments have been conducted on two large-scale real-life social networks. The experimental results demonstrate that the proposed method outperforms the state-of-the-art models with a big margin

    Multi-level hyperedge distillation for social linking prediction on sparsely observed networks

    Full text link
    Social linking prediction is one of the most fundamental problems in online social networks and has attracted researchers' persistent attention. Most of the existing works predict unobserved links using graph neural networks (GNNs) to learn node embeddings upon pair-wise relations. Despite promising results given enough observed links, these models are still challenging to achieve heart-stirring performance when observed links are extremely limited. The main reason is that they only focus on the smoothness of node representations on pair-wise relations. Unfortunately, this assumption may fall when the networks do not have enough observed links to support it. To this end, we go beyond pair-wise relations and propose a new and novel framework using hypergraph neural networks with multi-level hyperedge distillation strategies. To break through the limitations of sparsely observed links, we introduce the hypergraph to uncover higher-level relations, which is exceptionally crucial to deduce unobserved links. A hypergraph allows one edge to connect multiple nodes, making it easier to learn better higher-level relations for link prediction. To overcome the restrictions of manually designed hypergraphs, which is constant in most hypergraph researches, we propose a new method to learn high-quality hyperedges using three novel hyperedges distillation strategies automatically. The generated hyperedges are hierarchical and follow the power-law distribution, which can significantly improve the link prediction performance. To predict unobserved links, we present a novel hypergraph neural networks named HNN. HNN takes the multi-level hypergraphs as input and makes the node embeddings smooth on hyperedges instead of pair-wise links only. Extensive evaluations on four real-world datasets demonstrate our model's superior performance over state-of-the-art baselines, especially when the observed links are extremely reduced

    Digital Twin-Oriented Complex Networked Systems based on Heterogeneous node features and interaction rules

    Full text link
    This study proposes an extendable modelling framework for Digital Twin-Oriented Complex Networked Systems (DT-CNSs) with a goal of generating networks that faithfully represent real systems. Modelling process focuses on (i) features of nodes and (ii) interaction rules for creating connections that are built based on individual node's preferences. We conduct experiments on simulation-based DT-CNSs that incorporate various features and rules about network growth and different transmissibilities related to an epidemic spread on these networks. We present a case study on disaster resilience of social networks given an epidemic outbreak by investigating the infection occurrence within specific time and social distance. The experimental results show how different levels of the structural and dynamics complexities, concerned with feature diversity and flexibility of interaction rules respectively, influence network growth and epidemic spread. The analysis revealed that, to achieve maximum disaster resilience, mitigation policies should be targeted at nodes with preferred features as they have higher infection risks and should be the focus of the epidemic control
    corecore