7 research outputs found

    Learning More From Less: Towards Strengthening Weak Supervision for Ad-Hoc Retrieval

    Full text link
    The limited availability of ground truth relevance labels has been a major impediment to the application of supervised methods to ad-hoc retrieval. As a result, unsupervised scoring methods, such as BM25, remain strong competitors to deep learning techniques which have brought on dramatic improvements in other domains, such as computer vision and natural language processing. Recent works have shown that it is possible to take advantage of the performance of these unsupervised methods to generate training data for learning-to-rank models. The key limitation to this line of work is the size of the training set required to surpass the performance of the original unsupervised method, which can be as large as 101310^{13} training examples. Building on these insights, we propose two methods to reduce the amount of training data required. The first method takes inspiration from crowdsourcing, and leverages multiple unsupervised rankers to generate soft, or noise-aware, training labels. The second identifies harmful, or mislabeled, training examples and removes them from the training set. We show that our methods allow us to surpass the performance of the unsupervised baseline with far fewer training examples than previous works.Comment: SIGIR 201

    Neural check-worthiness ranking with weak supervision:Finding sentences for fact-checking

    Get PDF
    Automatic fact-checking systems detect misinformation, such as fake news, by (i) selecting check-worthy sentences for fact-checking, (ii) gathering related information to the sentences, and (iii) inferring the factuality of the sentences. Most prior research on (i) uses hand-crafted features to select check-worthy sentences, and does not explicitly account for the recent finding that the top weighted terms in both check-worthy and non-check-worthy sentences are actually overlapping [15]. Motivated by this, we present a neural check-worthiness sentence ranking model that represents each word in a sentence by \textit{both} its embedding (aiming to capture its semantics) and its syntactic dependencies (aiming to capture its role in modifying the semantics of other terms in the sentence). Our model is an end-to-end trainable neural network for check-worthiness ranking, which is trained on large amounts of unlabelled data through weak supervision. Thorough experimental evaluation against state of the art baselines, with and without weak supervision, shows our model to be superior at all times (+13% in MAP and +28% at various Precision cut-offs from the best baseline with statistical significance). Empirical analysis of the use of weak supervision, word embedding pretraining on domain-specific data, and the use of syntactic dependencies of our model reveals that check-worthy sentences contain notably more identical syntactic dependencies than non-check-worthy sentences.Comment: 6 page
    corecore