32,144 research outputs found

    Full-Network Embedding in a Multimodal Embedding Pipeline

    Full text link
    The current state-of-the-art for image annotation and image retrieval tasks is obtained through deep neural networks, which combine an image representation and a text representation into a shared embedding space. In this paper we evaluate the impact of using the Full-Network embedding in this setting, replacing the original image representation in a competitive multimodal embedding generation scheme. Unlike the one-layer image embeddings typically used by most approaches, the Full-Network embedding provides a multi-scale representation of images, which results in richer characterizations. To measure the influence of the Full-Network embedding, we evaluate its performance on three different datasets, and compare the results with the original multimodal embedding generation scheme when using a one-layer image embedding, and with the rest of the state-of-the-art. Results for image annotation and image retrieval tasks indicate that the Full-Network embedding is consistently superior to the one-layer embedding. These results motivate the integration of the Full-Network embedding on any multimodal embedding generation scheme, something feasible thanks to the flexibility of the approach.Comment: In 2nd Workshop on Semantic Deep Learning (SemDeep-2) at the 12th International Conference on Computational Semantics (IWCS) 201

    CM-GANs: Cross-modal Generative Adversarial Networks for Common Representation Learning

    Full text link
    It is known that the inconsistent distribution and representation of different modalities, such as image and text, cause the heterogeneity gap that makes it challenging to correlate such heterogeneous data. Generative adversarial networks (GANs) have shown its strong ability of modeling data distribution and learning discriminative representation, existing GANs-based works mainly focus on generative problem to generate new data. We have different goal, aim to correlate heterogeneous data, by utilizing the power of GANs to model cross-modal joint distribution. Thus, we propose Cross-modal GANs to learn discriminative common representation for bridging heterogeneity gap. The main contributions are: (1) Cross-modal GANs architecture is proposed to model joint distribution over data of different modalities. The inter-modality and intra-modality correlation can be explored simultaneously in generative and discriminative models. Both of them beat each other to promote cross-modal correlation learning. (2) Cross-modal convolutional autoencoders with weight-sharing constraint are proposed to form generative model. They can not only exploit cross-modal correlation for learning common representation, but also preserve reconstruction information for capturing semantic consistency within each modality. (3) Cross-modal adversarial mechanism is proposed, which utilizes two kinds of discriminative models to simultaneously conduct intra-modality and inter-modality discrimination. They can mutually boost to make common representation more discriminative by adversarial training process. To the best of our knowledge, our proposed CM-GANs approach is the first to utilize GANs to perform cross-modal common representation learning. Experiments are conducted to verify the performance of our proposed approach on cross-modal retrieval paradigm, compared with 10 methods on 3 cross-modal datasets

    Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval

    Full text link
    With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of these hashing methods are designed to handle simple binary similarity. The complex multilevel semantic structure of images associated with multiple labels have not yet been well explored. Here we propose a deep semantic ranking based method for learning hash functions that preserve multilevel semantic similarity between multi-label images. In our approach, deep convolutional neural network is incorporated into hash functions to jointly learn feature representations and mappings from them to hash codes, which avoids the limitation of semantic representation power of hand-crafted features. Meanwhile, a ranking list that encodes the multilevel similarity information is employed to guide the learning of such deep hash functions. An effective scheme based on surrogate loss is used to solve the intractable optimization problem of nonsmooth and multivariate ranking measures involved in the learning procedure. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods in term of ranking evaluation metrics when tested on multi-label image datasets.Comment: CVPR 201

    Unsupervised Semantic-based Aggregation of Deep Convolutional Features

    Full text link
    In this paper, we propose a simple but effective semantic-based aggregation (SBA) method. The proposed SBA utilizes the discriminative filters of deep convolutional layers as semantic detectors. Moreover, we propose the effective unsupervised strategy to select some semantic detectors to generate the "probabilistic proposals", which highlight certain discriminative pattern of objects and suppress the noise of background. The final global SBA representation could then be acquired by aggregating the regional representations weighted by the selected "probabilistic proposals" corresponding to various semantic content. Our unsupervised SBA is easy to generalize and achieves excellent performance on various tasks. We conduct comprehensive experiments and show that our unsupervised SBA outperforms the state-of-the-art unsupervised and supervised aggregation methods on image retrieval, place recognition and cloud classification.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1705.0124

    Instance-Aware Hashing for Multi-Label Image Retrieval

    Full text link
    Similarity-preserving hashing is a commonly used method for nearest neighbour search in large-scale image retrieval. For image retrieval, deep-networks-based hashing methods are appealing since they can simultaneously learn effective image representations and compact hash codes. This paper focuses on deep-networks-based hashing for multi-label images, each of which may contain objects of multiple categories. In most existing hashing methods, each image is represented by one piece of hash code, which is referred to as semantic hashing. This setting may be suboptimal for multi-label image retrieval. To solve this problem, we propose a deep architecture that learns \textbf{instance-aware} image representations for multi-label image data, which are organized in multiple groups, with each group containing the features for one category. The instance-aware representations not only bring advantages to semantic hashing, but also can be used in category-aware hashing, in which an image is represented by multiple pieces of hash codes and each piece of code corresponds to a category. Extensive evaluations conducted on several benchmark datasets demonstrate that, for both semantic hashing and category-aware hashing, the proposed method shows substantial improvement over the state-of-the-art supervised and unsupervised hashing methods.Comment: has been accepted as a regular paper in the IEEE Transactions on Image Processing, 201

    CCL: Cross-modal Correlation Learning with Multi-grained Fusion by Hierarchical Network

    Full text link
    Cross-modal retrieval has become a highlighted research topic for retrieval across multimedia data such as image and text. A two-stage learning framework is widely adopted by most existing methods based on Deep Neural Network (DNN): The first learning stage is to generate separate representation for each modality, and the second learning stage is to get the cross-modal common representation. However, the existing methods have three limitations: (1) In the first learning stage, they only model intra-modality correlation, but ignore inter-modality correlation with rich complementary context. (2) In the second learning stage, they only adopt shallow networks with single-loss regularization, but ignore the intrinsic relevance of intra-modality and inter-modality correlation. (3) Only original instances are considered while the complementary fine-grained clues provided by their patches are ignored. For addressing the above problems, this paper proposes a cross-modal correlation learning (CCL) approach with multi-grained fusion by hierarchical network, and the contributions are as follows: (1) In the first learning stage, CCL exploits multi-level association with joint optimization to preserve the complementary context from intra-modality and inter-modality correlation simultaneously. (2) In the second learning stage, a multi-task learning strategy is designed to adaptively balance the intra-modality semantic category constraints and inter-modality pairwise similarity constraints. (3) CCL adopts multi-grained modeling, which fuses the coarse-grained instances and fine-grained patches to make cross-modal correlation more precise. Comparing with 13 state-of-the-art methods on 6 widely-used cross-modal datasets, the experimental results show our CCL approach achieves the best performance.Comment: 16 pages, accepted by IEEE Transactions on Multimedi

    HashGAN:Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval

    Full text link
    As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogeneity gap. To further address this problem, we propose an adversarial hashing network with attention mechanism to enhance the measurement of content similarities by selectively focusing on informative parts of multi-modal data. The proposed new adversarial network, HashGAN, consists of three building blocks: 1) the feature learning module to obtain feature representations, 2) the generative attention module to generate an attention mask, which is used to obtain the attended (foreground) and the unattended (background) feature representations, 3) the discriminative hash coding module to learn hash functions that preserve the similarities between different modalities. In our framework, the generative module and the discriminative module are trained in an adversarial way: the generator is learned to make the discriminator cannot preserve the similarities of multi-modal data w.r.t. the background feature representations, while the discriminator aims to preserve the similarities of multi-modal data w.r.t. both the foreground and the background feature representations. Extensive evaluations on several benchmark datasets demonstrate that the proposed HashGAN brings substantial improvements over other state-of-the-art cross-modal hashing methods.Comment: 10 pages, 8 figures, 3 table

    A Deep One-Shot Network for Query-based Logo Retrieval

    Full text link
    Logo detection in real-world scene images is an important problem with applications in advertisement and marketing. Existing general-purpose object detection methods require large training data with annotations for every logo class. These methods do not satisfy the incremental demand of logo classes necessary for practical deployment since it is practically impossible to have such annotated data for new unseen logo. In this work, we develop an easy-to-implement query-based logo detection and localization system by employing a one-shot learning technique. Given an image of a query logo, our model searches for it within a given target image and predicts the possible location of the logo by estimating a binary segmentation mask. The proposed model consists of a conditional branch and a segmentation branch. The former gives a conditional latent representation of the given query logo which is combined with feature maps of the segmentation branch at multiple scales in order to find the matching position of the query logo in a target image, should it be present. Feature matching between the latent query representation and multi-scale feature maps of segmentation branch using simple concatenation operation followed by 1x1 convolution layer makes our model scale-invariant. Despite its simplicity, our query-based logo retrieval framework achieved superior performance in FlickrLogos-32 and TopLogos-10 dataset over different existing baselines.Comment: Accepted in Pattern Recognition, Elsevier(2019

    Modality-specific Cross-modal Similarity Measurement with Recurrent Attention Network

    Full text link
    Nowadays, cross-modal retrieval plays an indispensable role to flexibly find information across different modalities of data. Effectively measuring the similarity between different modalities of data is the key of cross-modal retrieval. Different modalities such as image and text have imbalanced and complementary relationships, which contain unequal amount of information when describing the same semantics. For example, images often contain more details that cannot be demonstrated by textual descriptions and vice versa. Existing works based on Deep Neural Network (DNN) mostly construct one common space for different modalities to find the latent alignments between them, which lose their exclusive modality-specific characteristics. Different from the existing works, we propose modality-specific cross-modal similarity measurement (MCSM) approach by constructing independent semantic space for each modality, which adopts end-to-end framework to directly generate modality-specific cross-modal similarity without explicit common representation. For each semantic space, modality-specific characteristics within one modality are fully exploited by recurrent attention network, while the data of another modality is projected into this space with attention based joint embedding to utilize the learned attention weights for guiding the fine-grained cross-modal correlation learning, which can capture the imbalanced and complementary relationships between different modalities. Finally, the complementarity between the semantic spaces for different modalities is explored by adaptive fusion of the modality-specific cross-modal similarities to perform cross-modal retrieval. Experiments on the widely-used Wikipedia and Pascal Sentence datasets as well as our constructed large-scale XMediaNet dataset verify the effectiveness of our proposed approach, outperforming 9 state-of-the-art methods.Comment: 13 pages, submitted to IEEE Transactions on Image Processin

    Cross-modal Deep Metric Learning with Multi-task Regularization

    Full text link
    DNN-based cross-modal retrieval has become a research hotspot, by which users can search results across various modalities like image and text. However, existing methods mainly focus on the pairwise correlation and reconstruction error of labeled data. They ignore the semantically similar and dissimilar constraints between different modalities, and cannot take advantage of unlabeled data. This paper proposes Cross-modal Deep Metric Learning with Multi-task Regularization (CDMLMR), which integrates quadruplet ranking loss and semi-supervised contrastive loss for modeling cross-modal semantic similarity in a unified multi-task learning architecture. The quadruplet ranking loss can model the semantically similar and dissimilar constraints to preserve cross-modal relative similarity ranking information. The semi-supervised contrastive loss is able to maximize the semantic similarity on both labeled and unlabeled data. Compared to the existing methods, CDMLMR exploits not only the similarity ranking information but also unlabeled cross-modal data, and thus boosts cross-modal retrieval accuracy.Comment: Revision: Added reference [7] 6 pages, 1 figure, to appear in the proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Jul 10, 2017 - Jul 14, 2017, Hong Kong, Hong Kon
    corecore