42,936 research outputs found

    Multi-layer Dictionary Learning for Image Classification

    No full text
    International audienceThis paper presents a multi-layer dictionary learning method for classification tasks. The goal of the proposed multi-layer framework is to use the supervised dictionary learning approach locally on raw images in order to learn local features. This method starts by building a sparse representation at the patch-level and relies on a hierarchy of learned dictionaries to output a global sparse representation for the whole image. It relies on a succession of sparse coding and pooling steps in order to find an efficient representation of the data for classification. This method has been tested on a classification task with good results

    Building efficient deep Hebbian networks for image classification tasks

    Get PDF
    Multi-layer models of sparse coding (deep dictionary learning) and dimensionality reduction (PCANet) have shown promise as unsupervised learning models for image classification tasks. However, the pure implementations of these models have limited generalisation capabilities and high computational cost. This work introduces the Deep Hebbian Network (DHN), which combines the advantages of sparse coding, dimensionality reduction, and convolutional neural networks for learning features from images. Unlike in other deep neural networks, in this model, both the learning rules and neural architectures are derived from cost-function minimizations. Moreover, the DHN model can be trained online due to its Hebbian components. Different configurations of the DHN have been tested on scene and image classification tasks. Experiments show that the DHN model can automatically discover highly discriminative features directly from image pixels without using any data augmentation or semi-labeling

    Online Multi-Stage Deep Architectures for Feature Extraction and Object Recognition

    Get PDF
    Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. Large datasets with high-dimensional features complicate the implementation of visual architectures in memory constrained environments. This dissertation constructs online learning replacements for the components within a multi-stage architecture and demonstrates that the proposed replacements (namely fuzzy competitive clustering, an incremental covariance estimator, and multi-layer neural network) can offer performance competitive with their offline batch counterparts while providing a reduced memory footprint. The online nature of this solution allows for the development of a method for adjusting parameters within the architecture via stochastic gradient descent. Testing over multiple datasets shows the potential benefits of this methodology when appropriate priors on the initial parameters are unknown. Alternatives to batch based decompositions for a whitening preprocessing stage which take advantage of natural image statistics and allow simple dictionary learners to work well in the problem domain are also explored. Expansions of the architecture using additional pooling statistics and multiple layers are presented and indicate that larger codebook sizes are not the only step forward to higher classification accuracies. Experimental results from these expansions further indicate the important role of sparsity and appropriate encodings within multi-stage visual feature extraction architectures
    corecore