186 research outputs found
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website
The electroencephalogram (EEG) provides a non-invasive, minimally
restrictive, and relatively low cost measure of mesoscale brain dynamics with
high temporal resolution. Although signals recorded in parallel by multiple,
near-adjacent EEG scalp electrode channels are highly-correlated and combine
signals from many different sources, biological and non-biological, independent
component analysis (ICA) has been shown to isolate the various source generator
processes underlying those recordings. Independent components (IC) found by ICA
decomposition can be manually inspected, selected, and interpreted, but doing
so requires both time and practice as ICs have no particular order or intrinsic
interpretations and therefore require further study of their properties.
Alternatively, sufficiently-accurate automated IC classifiers can be used to
classify ICs into broad source categories, speeding the analysis of EEG studies
with many subjects and enabling the use of ICA decomposition in near-real-time
applications. While many such classifiers have been proposed recently, this
work presents the ICLabel project comprised of (1) an IC dataset containing
spatiotemporal measures for over 200,000 ICs from more than 6,000 EEG
recordings, (2) a website for collecting crowdsourced IC labels and educating
EEG researchers and practitioners about IC interpretation, and (3) the
automated ICLabel classifier. The classifier improves upon existing methods in
two ways: by improving the accuracy of the computed label estimates and by
enhancing its computational efficiency. The ICLabel classifier outperforms or
performs comparably to the previous best publicly available method for all
measured IC categories while computing those labels ten times faster than that
classifier as shown in a rigorous comparison against all other publicly
available EEG IC classifiers.Comment: Intended for NeuroImage. Updated from version one with minor
editorial and figure change
Weakly-supervised Dictionary Learning
We present a probabilistic modeling and inference framework for
discriminative analysis dictionary learning under a weak supervision setting.
Dictionary learning approaches have been widely used for tasks such as
low-level signal denoising and restoration as well as high-level classification
tasks, which can be applied to audio and image analysis. Synthesis dictionary
learning aims at jointly learning a dictionary and corresponding sparse
coefficients to provide accurate data representation. This approach is useful
for denoising and signal restoration, but may lead to sub-optimal
classification performance. By contrast, analysis dictionary learning provides
a transform that maps data to a sparse discriminative representation suitable
for classification. We consider the problem of analysis dictionary learning for
time-series data under a weak supervision setting in which signals are assigned
with a global label instead of an instantaneous label signal. We propose a
discriminative probabilistic model that incorporates both label information and
sparsity constraints on the underlying latent instantaneous label signal using
cardinality control. We present the expectation maximization (EM) procedure for
maximum likelihood estimation (MLE) of the proposed model. To facilitate a
computationally efficient E-step, we propose both a chain and a novel tree
graph reformulation of the graphical model. The performance of the proposed
model is demonstrated on both synthetic and real-world data
Temporal Model Adaptation for Person Re-Identification
Person re-identification is an open and challenging problem in computer
vision. Majority of the efforts have been spent either to design the best
feature representation or to learn the optimal matching metric. Most approaches
have neglected the problem of adapting the selected features or the learned
model over time. To address such a problem, we propose a temporal model
adaptation scheme with human in the loop. We first introduce a
similarity-dissimilarity learning method which can be trained in an incremental
fashion by means of a stochastic alternating directions methods of multipliers
optimization procedure. Then, to achieve temporal adaptation with limited human
effort, we exploit a graph-based approach to present the user only the most
informative probe-gallery matches that should be used to update the model.
Results on three datasets have shown that our approach performs on par or even
better than state-of-the-art approaches while reducing the manual pairwise
labeling effort by about 80%
A supervised learning framework in the context of multiple annotators
The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, is changing how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), we have datasets labeled by multiple annotators with different and unknown expertise. Hence, we face a multi-labeler scenario, which typical supervised learning models cannot tackle. For such a reason, much attention has recently been given to the approaches that capture multiple annotators’ wisdom. However, such methods residing on two key assumptions: the labeler’s performance does not depend on the input space and independence among the annotators, which are hardly feasible in real-world settings..
A supervised learning framework in the context of multiple annotators
The increasing popularity of crowdsourcing platforms, i.e., Amazon Mechanical Turk, is changing how datasets for supervised learning are built. In these cases, instead of having datasets labeled by one source (which is supposed to be an expert who provided the absolute gold standard), we have datasets labeled by multiple annotators with different and unknown expertise. Hence, we face a multi-labeler scenario, which typical supervised learning models cannot tackle. For such a reason, much attention has recently been given to the approaches that capture multiple annotators’ wisdom. However, such methods residing on two key assumptions: the labeler’s performance does not depend on the input space and independence among the annotators, which are hardly feasible in real-world settings..
- …
