16 research outputs found

    CrowdHuman: A Benchmark for Detecting Human in a Crowd

    Full text link
    Human detection has witnessed impressive progress in recent years. However, the occlusion issue of detecting human in highly crowded environments is far from solved. To make matters worse, crowd scenarios are still under-represented in current human detection benchmarks. In this paper, we introduce a new dataset, called CrowdHuman, to better evaluate detectors in crowd scenarios. The CrowdHuman dataset is large, rich-annotated and contains high diversity. There are a total of 470K470K human instances from the train and validation subsets, and  22.6~22.6 persons per image, with various kinds of occlusions in the dataset. Each human instance is annotated with a head bounding-box, human visible-region bounding-box and human full-body bounding-box. Baseline performance of state-of-the-art detection frameworks on CrowdHuman is presented. The cross-dataset generalization results of CrowdHuman dataset demonstrate state-of-the-art performance on previous dataset including Caltech-USA, CityPersons, and Brainwash without bells and whistles. We hope our dataset will serve as a solid baseline and help promote future research in human detection tasks

    SSA-CNN: Semantic Self-Attention CNN for Pedestrian Detection

    Full text link
    Pedestrian detection plays an important role in many applications such as autonomous driving. We propose a method that explores semantic segmentation results as self-attention cues to significantly improve the pedestrian detection performance. Specifically, a multi-task network is designed to jointly learn semantic segmentation and pedestrian detection from image datasets with weak box-wise annotations. The semantic segmentation feature maps are concatenated with corresponding convolution features maps to provide more discriminative features for pedestrian detection and pedestrian classification. By jointly learning segmentation and detection, our proposed pedestrian self-attention mechanism can effectively identify pedestrian regions and suppress backgrounds. In addition, we propose to incorporate semantic attention information from multi-scale layers into deep convolution neural network to boost pedestrian detection. Experiment results show that the proposed method achieves the best detection performance with MR of 6.27% on Caltech dataset and obtain competitive performance on CityPersons dataset while maintaining high computational efficiency.Comment: wrong setting in CityPersons experiment

    Adaptive NMS: Refining Pedestrian Detection in a Crowd

    Full text link
    Pedestrian detection in a crowd is a very challenging issue. This paper addresses this problem by a novel Non-Maximum Suppression (NMS) algorithm to better refine the bounding boxes given by detectors. The contributions are threefold: (1) we propose adaptive-NMS, which applies a dynamic suppression threshold to an instance, according to the target density; (2) we design an efficient subnetwork to learn density scores, which can be conveniently embedded into both the single-stage and two-stage detectors; and (3) we achieve state of the art results on the CityPersons and CrowdHuman benchmarks.Comment: To appear at CVPR 2019 (Oral

    Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd

    Full text link
    Pedestrian detection in crowded scenes is a challenging problem since the pedestrians often gather together and occlude each other. In this paper, we propose a new occlusion-aware R-CNN (OR-CNN) to improve the detection accuracy in the crowd. Specifically, we design a new aggregation loss to enforce proposals to be close and locate compactly to the corresponding objects. Meanwhile, we use a new part occlusion-aware region of interest (PORoI) pooling unit to replace the RoI pooling layer in order to integrate the prior structure information of human body with visibility prediction into the network to handle occlusion. Our detector is trained in an end-to-end fashion, which achieves state-of-the-art results on three pedestrian detection datasets, i.e., CityPersons, ETH, and INRIA, and performs on-pair with the state-of-the-arts on Caltech.Comment: Accepted by ECCV 201

    PSC-Net: Learning Part Spatial Co-occurrence for Occluded Pedestrian Detection

    Full text link
    Detecting pedestrians, especially under heavy occlusions, is a challenging computer vision problem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net, for occluded pedestrian detection. The proposed PSC-Net contains a dedicated module that is designed to explicitly capture both inter and intra-part co-occurrence information of different pedestrian body parts through a Graph Convolutional Network (GCN). Both inter and intra-part co-occurrence information contribute towards improving the feature representation for handling varying level of occlusions, ranging from partial to severe occlusions. Our PSC-Net exploits the topological structure of pedestrian and does not require part-based annotations or additional visible bounding-box (VBB) information to learn part spatial co-occurrence. Comprehensive experiments are performed on two challenging datasets: CityPersons and Caltech datasets. The proposed PSC-Net achieves state-of-the-art detection performance on both. On the heavy occluded (\textbf{HO}) set of CityPerosns test set, our PSC-Net obtains an absolute gain of 4.0\% in terms of log-average miss rate over the state-of-the-art with same backbone, input scale and without using additional VBB supervision. Further, PSC-Net improves the state-of-the-art from 37.9 to 34.8 in terms of log-average miss rate on Caltech (\textbf{HO}) test set

    Mask-Guided Attention Network for Occluded Pedestrian Detection

    Full text link
    Pedestrian detection relying on deep convolution neural networks has made significant progress. Though promising results have been achieved on standard pedestrians, the performance on heavily occluded pedestrians remains far from satisfactory. The main culprits are intra-class occlusions involving other pedestrians and inter-class occlusions caused by other objects, such as cars and bicycles. These result in a multitude of occlusion patterns. We propose an approach for occluded pedestrian detection with the following contributions. First, we introduce a novel mask-guided attention network that fits naturally into popular pedestrian detection pipelines. Our attention network emphasizes on visible pedestrian regions while suppressing the occluded ones by modulating full body features. Second, we empirically demonstrate that coarse-level segmentation annotations provide reasonable approximation to their dense pixel-wise counterparts. Experiments are performed on CityPersons and Caltech datasets. Our approach sets a new state-of-the-art on both datasets. Our approach obtains an absolute gain of 9.5% in log-average miss rate, compared to the best reported results on the heavily occluded (HO) pedestrian set of CityPersons test set. Further, on the HO pedestrian set of Caltech dataset, our method achieves an absolute gain of 5.0% in log-average miss rate, compared to the best reported results. Code and models are available at: https://github.com/Leotju/MGAN.Comment: Accepted at ICCV 201

    Learning to Separate: Detecting Heavily-Occluded Objects in Urban Scenes

    Full text link
    While visual object detection with deep learning has received much attention in the past decade, cases when heavy intra-class occlusions occur have not been studied thoroughly. In this work, we propose a Non-Maximum-Suppression (NMS) algorithm that dramatically improves the detection recall while maintaining high precision in scenes with heavy occlusions. Our NMS algorithm is derived from a novel embedding mechanism, in which the semantic and geometric features of the detected boxes are jointly exploited. The embedding makes it possible to determine whether two heavily-overlapping boxes belong to the same object in the physical world. Our approach is particularly useful for car detection and pedestrian detection in urban scenes where occlusions often happen. We show the effectiveness of our approach by creating a model called SG-Det (short for Semantics and Geometry Detection) and testing SG-Det on two widely-adopted datasets, KITTI and CityPersons for which it achieves state-of-the-art performance.Comment: ECCV 202

    NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing

    Full text link
    Although significant progress has been made in pedestrian detection recently, pedestrian detection in crowded scenes is still challenging. The heavy occlusion between pedestrians imposes great challenges to the standard Non-Maximum Suppression (NMS). A relative low threshold of intersection over union (IoU) leads to missing highly overlapped pedestrians, while a higher one brings in plenty of false positives. To avoid such a dilemma, this paper proposes a novel Representative Region NMS approach leveraging the less occluded visible parts, effectively removing the redundant boxes without bringing in many false positives. To acquire the visible parts, a novel Paired-Box Model (PBM) is proposed to simultaneously predict the full and visible boxes of a pedestrian. The full and visible boxes constitute a pair serving as the sample unit of the model, thus guaranteeing a strong correspondence between the two boxes throughout the detection pipeline. Moreover, convenient feature integration of the two boxes is allowed for the better performance on both full and visible pedestrian detection tasks. Experiments on the challenging CrowdHuman and CityPersons benchmarks sufficiently validate the effectiveness of the proposed approach on pedestrian detection in the crowded situation.Comment: Accepted by CVPR2020. The first two authors contributed equally, and are listed in alphabetical orde

    Multiview Detection with Feature Perspective Transformation

    Full text link
    Incorporating multiple camera views for detection alleviates the impact of occlusions in crowded scenes. In a multiview system, we need to answer two important questions when dealing with ambiguities that arise from occlusions. First, how should we aggregate cues from the multiple views? Second, how should we aggregate unreliable 2D and 3D spatial information that has been tainted by occlusions? To address these questions, we propose a novel multiview detection system, MVDet. For multiview aggregation, existing methods combine anchor box features from the image plane, which potentially limits performance due to inaccurate anchor box shapes and sizes. In contrast, we take an anchor-free approach to aggregate multiview information by projecting feature maps onto the ground plane (bird's eye view). To resolve any remaining spatial ambiguity, we apply large kernel convolutions on the ground plane feature map and infer locations from detection peaks. Our entire model is end-to-end learnable and achieves 88.2% MODA on the standard Wildtrack dataset, outperforming the state-of-the-art by 14.1%. We also provide detailed analysis of MVDet on a newly introduced synthetic dataset, MultiviewX, which allows us to control the level of occlusion. Code and MultiviewX dataset are available at https://github.com/hou-yz/MVDet

    V2F-Net: Explicit Decomposition of Occluded Pedestrian Detection

    Full text link
    Occlusion is very challenging in pedestrian detection. In this paper, we propose a simple yet effective method named V2F-Net, which explicitly decomposes occluded pedestrian detection into visible region detection and full body estimation. V2F-Net consists of two sub-networks: Visible region Detection Network (VDN) and Full body Estimation Network (FEN). VDN tries to localize visible regions and FEN estimates full-body box on the basis of the visible box. Moreover, to further improve the estimation of full body, we propose a novel Embedding-based Part-aware Module (EPM). By supervising the visibility for each part, the network is encouraged to extract features with essential part information. We experimentally show the effectiveness of V2F-Net by conducting several experiments on two challenging datasets. V2F-Net achieves 5.85% AP gains on CrowdHuman and 2.24% MR-2 improvements on CityPersons compared to FPN baseline. Besides, the consistent gain on both one-stage and two-stage detector validates the generalizability of our method.Comment: 11 pages, 4 figure
    corecore