2,241 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Full text link
    The Internet is inherently a multipath network---for an underlying network with only a single path connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault-tolerance (through the use of multiple paths in backup/ redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be unmistakably multipath, including the use of multipath technology in datacenter computing; multi-interface, multi-channel, and multi-antenna trends in wireless; ubiquity of mobile devices that are multi-homed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as MP-TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely the control plane problem of how to compute and select the routes, and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    The Enhancement of Communication Technologies and Networks for Smart Grid Applications

    Full text link
    The current electrical grid is perhaps the greatest engineering achievement of the 20th century. However, it is increasingly outdated and overburdened, leading to costly blackouts and burnouts. For this and various other reasons,transformation efforts are underway to make the current electrical grid smarter. A reliable, universal and secure communication infrastructure is mandatory for the implementation and deployment of the future smart grid. A special interest is given to the design of efficient and robust network architecture capable of managing operation and control of the next generation power grid. For this purpose new wired and wireless technologies are emerging in addition to the formerly applied to help upgrade the current power grid. In this paper we will give an overview of smart grid reference model, and a comprehensive survey of the available networks for the smart grid and a critical review of the progress of wired and wireless communication technologies for smart grid communication infrastructure. And we propose end to end communication architecture for Home Area Networks (HANs), Neighborhood Area Networks (NANs) and Wide Area Networks (WANs) for smart grid applications. We believe that this work will provide appreciated insights for the novices who would like to follow related research in the SG domain

    Routing Protocols for Cognitive Radio Networks: A Survey

    Full text link
    This article has been withdrawn by arXiv administrators because it plagiarises http://www2.ece.ohio-state.edu/~ekici/papers/crnroutingsurvey.pdfComment: This article has been withdrawn by arXiv administrators because it plagiarises http://www2.ece.ohio-state.edu/~ekici/papers/crnroutingsurvey.pd

    Session-Based Cooperation in Cognitive Radio Networks: A Network-Level Approach

    Full text link
    In cognitive radio networks (CRNs), secondary users (SUs) can proactively obtain spectrum access opportunities by helping with primary users' (PUs') data transmissions. Currently, such kind of spectrum access is implemented via a cooperative communications based link-level frame-based cooperative (LLC) approach where individual SUs independently serve as relays for PUs in order to gain spectrum access opportunities. Unfortunately, this LLC approach cannot fully exploit spectrum access opportunities to enhance the throughput of CRNs and fails to motivate PUs to join the spectrum sharing processes. To address these challenges, we propose a network-level session-based cooperative (NLC) approach where SUs are grouped together to cooperate with PUs session by session, instead of frame by frame as what has been done in existing works, for spectrum access opportunities of the corresponding group. Thanks to our group-based session-by-session cooperating strategy, our NLC approach is able to address all those challenges in the LLC approach. To articulate our NLC approach, we further develop an NLC scheme under a cognitive capacity harvesting network (CCHN) architecture. We formulate the cooperative mechanism design as a cross-layer optimization problem with constraints on primary session selection, flow routing and link scheduling. To search for solutions to the optimization problem, we propose an augmented scheduling index ordering based (SIO-based) algorithm to identify maximal independent sets. Through extensive simulations, we demonstrate the effectiveness of the proposed NLC approach and the superiority of the augmented SIO-based algorithm over the traditional method

    A Survey on 5G: The Next Generation of Mobile Communication

    Full text link
    The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state-of-the-art architectures and technologies. In this paper, our intent is to find an answer to the question: "what will be done by 5G and how?" We investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks. We identify challenges in 5G networks, new technologies for 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types. Interestingly, the implementation issues, e.g., interference, QoS, handoff, security-privacy, channel access, and load balancing, hugely effect the realization of 5G networks. Furthermore, our illustrations highlight the feasibility of these models through an evaluation of existing real-experiments and testbeds.Comment: Accepted in Elsevier Physical Communication, 24 pages, 5 figures, 2 table

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems

    Towards Standardization of Millimeter Wave Vehicle-to-Vehicle Networks: Open Challenges and Performance Evaluation

    Full text link
    IEEE 802.11bd and 3GPP NR V2X represent the new specifications for next generation vehicular networks, exploiting new communication technologies and new spectrum, such as the millimeter wave (mmWave) band, to improve throughput and reduce latency. In this paper, we specifically focus on the challenges that mmWaves introduce for Vehicle-to-Vehicle (V2V) networking, by reviewing the latest standard developments and the issues that 802.11bd and NR V2X will have to address for V2V operations at mmWaves. To the best of our knowledge, our work is the first that considers a full-stack, end-to-end approach for the design of mmWave V2V networks, discussing open issues that span from the physical to the higher layers, and reporting the results of an end-to-end performance evaluation that highlight the potential of mmWaves for V2V communications.Comment: 7 pages, 4 figures, 1 tabl

    HELPER: Heterogeneous Efficient Low Power Radio for Enabling Ad Hoc Emergency Public Safety Networks

    Full text link
    Natural and man-made disasters have been causing destruction and distress to humanity all over the world. In these scenarios, communication infrastructures are the most affected entities making emergency response operations extremely challenging. This invokes a need to equip the affected people and the emergency responders with the ability to rapidly set up and use independent means of communication. Therefore, in this work, we present a complete end-to-end solution that can connect survivors of a disaster with each other and the authorities using a completely self-sufficient ad hoc network that can be setup rapidly. Accordingly, we develop a Heterogeneous Efficient Low Power Radio (HELPER) that acts as an access point for end-users to connect using custom website application. These HELPERs then coordinate with each other to form a LoRa based ad hoc network. To this end, we propose a novel cross-layer optimized distributed energy-efficient routing (SEEK) algorithm that aims to maximize the network lifetime. The HELPER is prototyped using WiFi enabled Raspberry Pi and LoRa module that is configured to run using Li-ion batteries. We implement the required cross-layer protocol stack along with the SEEK routing algorithm. We have conducted demonstrations to establish the feasibility of exchanging of text messages over the HELPER network, live map updates, ability to send distress messages to authorities. Emergency responders can leverage this technology to remotely monitor the connectivity of the affected area and alert users of imminent dangers. SEEK algorithm was shown to outperform a greedy geographical routing algorithm implemented on HELPER testbed by up to 53 % in terms of network lifetime and up to 28 % in terms of throughput. Overall, we hope this technology will become instrumental in improving the efficiency and effectiveness of public safety activities

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure
    corecore