10,712 research outputs found

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A Review of Voice-Base Person Identification: State-of-the-Art

    Get PDF
    Automated person identification and authentication systems are useful for national security, integrity of electoral processes, prevention of cybercrimes and many access control applications. This is a critical component of information and communication technology which is central to national development. The use of biometrics systems in identification is fast replacing traditional methods such as use of names, personal identification numbers codes, password, etc., since nature bestow individuals with distinct personal imprints and signatures. Different measures have been put in place for person identification, ranging from face, to fingerprint and so on. This paper highlights the key approaches and schemes developed in the last five decades for voice-based person identification systems. Voice-base recognition system has gained interest due to its non-intrusive technique of data acquisition and its increasing method of continually studying and adapting to the person’s changes. Information on the benefits and challenges of various biometric systems are also presented in this paper. The present and prominent voice-based recognition methods are discussed. It was observed that these systems application areas have covered intelligent monitoring, surveillance, population management, election forensics, immigration and border control

    Low-Cost Active Monitoring of Attendance using Passive RFID Technology

    Get PDF
    In this paper, a smart attendance system for students attending schools is proposed. The proposed attendance system is based on Radio Frequency Identification (RFID) technology to facilitate automation and convenience. The proposed RFID Attendance System (RFID-AS) should be used by school administration to ensure safety for students as well as using it for grading and evaluation purposes. After careful study, passive RFID technology is selected to be used by the proposed system for its reasonable cost. The main components of the system are an RFID tag, an RFID reader, Visual Studio (XAF Tool), and SQL Server to compare the data from the RFID tag with the students’ database to record attendance automatically. A Graphical User Interface (GUI) is developed using Visual Studio (XAF Tool) to allow parents and school faculty to log in and browse the students’ records. Students will pass the classroom door, which will have an integrated RFID reader device to read their RFID. The paper discusses the design of the solution as well as the testing scenarios

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Review of Multimodal Biometric Identification Using Hand Feature and Face

    Full text link
    In the era of Information Technology, openness of the information is a major concern. As the confidentiality and integrity of the information is critically important, it has to be secured from unauthorized access. Security refers to prohibit some unauthorized persons from some important data or from some precious assets. So we need accurateness on automatic personal identification in various applications such as ATM, driving license, passports, citizen's card, cellular telephones, voter's ID card etc. Unimodal system carries some problems such as Noise in sensed data, Intra-class variations, Inter-class similarities, Non-universality and Spoof attacks. The accuracy of system is improved by combining different biometric traits which are called multimodal. This system gives more accuracy as it would be difficult for imposter to spoof multiple biometric traits simultaneously. This paper reviews different methods for fusion of biometric traits

    Gait-based identification for elderly users in wearable healthcare systems

    Get PDF
    Abstract The increasing scope of sensitive personal information that is collected and stored in wearable healthcare devices includes physical, physiological, and daily activities, which makes the security of these devices very essential. Gait-based identity recognition is an emerging technology, which is increasingly used for the access control of wearable devices, due to its outstanding performance. However, gait-based identity recognition of elderly users is more challenging than that of young adults, due to significant intra-subject gait fluctuation, which becomes more pronounced with user age. This study introduces a gait-based identity recognition method used for the access control of elderly people-centred wearable healthcare devices, which alleviates the intra-subject gait fluctuation problem and provides a significant recognition rate improvement, as compared to available methods. Firstly, a gait template synthesis method is proposed to reduce the intra-subject gait fluctuation of elderly users. Then, an arbitration-based score level fusion method is defined to improve the recognition accuracy. Finally, the proposed method feasibility is verified using a public dataset containing acceleration signals from three IMUs worn by 64 elderly users with the age range from 50 to 79 years. The experimental results obtained prove that the average recognition rate of the proposed method reaches 96.7%. This makes the proposed method quite lucrative for the robust gait-based identification of elderly users of wearable healthcare devices
    • 

    corecore