15,095 research outputs found

    Multi-view Graph Embedding with Hub Detection for Brain Network Analysis

    Full text link
    Multi-view graph embedding has become a widely studied problem in the area of graph learning. Most of the existing works on multi-view graph embedding aim to find a shared common node embedding across all the views of the graph by combining the different views in a specific way. Hub detection, as another essential topic in graph mining has also drawn extensive attentions in recent years, especially in the context of brain network analysis. Both the graph embedding and hub detection relate to the node clustering structure of graphs. The multi-view graph embedding usually implies the node clustering structure of the graph based on the multiple views, while the hubs are the boundary-spanning nodes across different node clusters in the graph and thus may potentially influence the clustering structure of the graph. However, none of the existing works in multi-view graph embedding considered the hubs when learning the multi-view embeddings. In this paper, we propose to incorporate the hub detection task into the multi-view graph embedding framework so that the two tasks could benefit each other. Specifically, we propose an auto-weighted framework of Multi-view Graph Embedding with Hub Detection (MVGE-HD) for brain network analysis. The MVGE-HD framework learns a unified graph embedding across all the views while reducing the potential influence of the hubs on blurring the boundaries between node clusters in the graph, thus leading to a clear and discriminative node clustering structure for the graph. We apply MVGE-HD on two real multi-view brain network datasets (i.e., HIV and Bipolar). The experimental results demonstrate the superior performance of the proposed framework in brain network analysis for clinical investigation and application

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks
    • …
    corecore