34 research outputs found

    3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands

    Get PDF
    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.The research leading to these result has received funding from the Spanish Government and European FEDER funds (DPI2015-68087R), the Valencia Regional Government (PROMETEO/2013/085) as well as the pre-doctoral grant BES-2013-062864

    Towards Developing Gripper to obtain Dexterous Manipulation

    Get PDF
    Artificial hands or grippers are essential elements in many robotic systems, such as, humanoid, industry, social robot, space robot, mobile robot, surgery and so on. As humans, we use our hands in different ways and can perform various maneuvers such as writing, altering posture of an object in-hand without having difficulties. Most of our daily activities are dependent on the prehensile and non-prehensile capabilities of our hand. Therefore, the human hand is the central motivation of grasping and manipulation, and has been explicitly studied from many perspectives such as, from the design of complex actuation, synergy, use of soft material, sensors, etc; however to obtain the adaptability to a plurality of objects along with the capabilities of in-hand manipulation of our hand in a grasping device is not easy, and not fully evaluated by any developed gripper. Industrial researchers primarily use rigid materials and heavy actuators in the design for repeatability, reliability to meet dexterity, precision, time requirements where the required flexibility to manipulate object in-hand is typically absent. On the other hand, anthropomorphic hands are generally developed by soft materials. However they are not deployed for manipulation mainly due to the presence of numerous sensors and consequent control complexity of under-actuated mechanisms that significantly reduce speed and time requirements of industrial demand. Hence, developing artificial hands or grippers with prehensile capabilities and dexterity similar to human like hands is challenging, and it urges combined contributions from multiple disciplines such as, kinematics, dynamics, control, machine learning and so on. Therefore, capabilities of artificial hands in general have been constrained to some specific tasks according to their target applications, such as grasping (in biomimetic hands) or speed/precision in a pick and place (in industrial grippers). Robotic grippers developed during last decades are mostly aimed to solve grasping complexities of several objects as their primary objective. However, due to the increasing demands of industries, many issues are rising and remain unsolved such as in-hand manipulation and placing object with appropriate posture. Operations like twisting, altering orientation of object within-hand, require significant dexterity of the gripper that must be achieved from a compact mechanical design at the first place. Along with manipulation, speed is also required in many robotic applications. Therefore, for the available speed and design simplicity, nonprehensile or dynamic manipulation is widely exploited. The nonprehensile approach however, does not focus on stable grasping in general. Also, nonprehensile or dynamic manipulation often exceeds robot\u2019s kinematic workspace, which additionally urges installation of high speed feedback and robust control. Hence, these approaches are inapplicable especially when, the requirements are grasp oriented such as, precise posture change of a payload in-hand, placing payload afterward according to a strict final configuration. Also, addressing critical payload such as egg, contacts (between gripper and egg) cannot be broken completely during manipulation. Moreover, theoretical analysis, such as contact kinematics, grasp stability cannot predict the nonholonomic behaviors, and therefore, uncertainties are always present to restrict a maneuver, even though the gripper is capable of doing the task. From a technical point of view, in-hand manipulation or within-hand dexterity of a gripper significantly isolates grasping and manipulation skills from the dependencies on contact type, a priory knowledge of object model, configurations such as initial or final postures and also additional environmental constraints like disturbance, that may causes breaking of contacts between object and finger. Hence, the property (in-hand manipulation) is important for a gripper in order to obtain human hand skill. In this research, these problems (to obtain speed, flexibility to a plurality of grasps, within-hand dexterity in a single gripper) have been tackled in a novel way. A gripper platform named Dexclar (DEXterous reConfigurable moduLAR) has been developed in order to study in-hand manipulation, and a generic spherical payload has been considered at the first place. Dexclar is mechanism-centric and it exploits modularity and reconfigurability to the aim of achieving within-hand dexterity rather than utilizing soft materials. And hence, precision, speed are also achievable from the platform. The platform can perform several grasps (pinching, form closure, force closure) and address a very important issue of releasing payload with final posture/ configuration after manipulation. By exploiting 16 degrees of freedom (DoF), Dexclar is capable to provide 6 DoF motions to a generic spherical or ellipsoidal payload. And since a mechanism is reliable, repeatable once it has been properly synthesized, precision and speed are also obtainable from them. Hence Dexclar is an ideal starting point to study within-hand dexterity from kinematic point of view. As the final aim is to develop specific grippers (having the above capabilities) by exploiting Dexclar, a highly dexterous but simply constructed reconfigurable platform named VARO-fi (VARiable Orientable fingers with translation) is proposed, which can be used as an industrial end-effector, as well as an alternative of bio-inspired gripper in many robotic applications. The robust four fingered VARO-fi addresses grasp, in-hand manipulation and release (payload with desired configuration) of plurality of payloads, as demonstrated in this thesis. Last but not the least, several tools and end-effectors have been constructed to study prehensile and non-prehensile manipulation, thanks to Bayer Robotic challenge 2017, where the feasibility and their potentiality to use them in an industrial environment have been validated. The above mentioned research will enhance a new dimension for designing grippers with the properties of dexterity and flexibility at the same time, without explicit theoretical analysis, algorithms, as those are difficult to implement and sometime not feasible for real system

    Multifingered grasping for robotic manipulation

    Get PDF
    Robotic hand increases the adaptability of grasping and manipulating objects with its system.But this added adaptability of grasping convolute the process of grasping the object. The analysis of the grasp is very much complicated and large number of configuration for grasping is to be investigated. Handling of objects with irregular shapes and that of flexible/soft objects by ordinary robot grippers is difficult. It is required that various objects with different shapes or sizes could be grasped and manipulated by one robot hand mechanism for the sake of factory automation and labour saving. Dexterous grippers will be the appropriate solution to such problems. Corresponding to such needs, the present work is towards the design and development of an articulated mechanical hand with five fingers and twenty five degrees-of-freedom having an improved grasp capability. In the work, the distance between the Thumb and Finger and the workspace generated by the hand is calculated so as to know about the size and shape of the object that could be grasped.Further the Force applied by the Fingers and there point of application is also being calculated so as to have a stable force closure grasp. The method introduced in present study reduces the complexity and computational burden of grasp synthesis by examining grasps at the finger level. A detailed study on the force closure grasping capability and quality has been carried out. The workspace of the five fingered hand has been used as the maximum spatial envelope. The problem has been considered with positive grips constructed as non-negative linear combinations of primitive and pure wrenches. The attention has been restricted to systems of wrenches generated by the hand fingers assuming Coulomb friction. In order to validate the algorithm vis-a-vis the designed five fingered dexterous hand, example problems have been solved with multiple sets of contact points on various shaped objects.Since the designed hand is capable of enveloping and grasping an object mechanically, it can be used conveniently and widely in manufacturing automation and for medical rehabilitation purpose. This work presents the kinematic design and the grasping analysis of such a hand

    Human Inspired Multi-Modal Robot Touch

    Get PDF

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications
    corecore