821 research outputs found

    Optimization Model for Planning Precision Grasps with Multi-Fingered Hands

    Full text link
    Precision grasps with multi-fingered hands are important for precise placement and in-hand manipulation tasks. Searching precision grasps on the object represented by point cloud, is challenging due to the complex object shape, high-dimensionality, collision and undesired properties of the sensing and positioning. This paper proposes an optimization model to search for precision grasps with multi-fingered hands. The model takes noisy point cloud of the object as input and optimizes the grasp quality by iteratively searching for the palm pose and finger joints positions. The collision between the hand and the object is approximated and penalized by a series of least-squares. The collision approximation is able to handle the point cloud representation of the objects with complex shapes. The proposed optimization model is able to locate collision-free optimal precision grasps efficiently. The average computation time is 0.50 sec/grasp. The searching is robust to the incompleteness and noise of the point cloud. The effectiveness of the algorithm is demonstrated by experiments.Comment: Submitted to IROS2019, experiment on BarrettHand, 8 page

    CASSL: Curriculum Accelerated Self-Supervised Learning

    Full text link
    Recent self-supervised learning approaches focus on using a few thousand data points to learn policies for high-level, low-dimensional action spaces. However, scaling this framework for high-dimensional control require either scaling up the data collection efforts or using a clever sampling strategy for training. We present a novel approach - Curriculum Accelerated Self-Supervised Learning (CASSL) - to train policies that map visual information to high-level, higher- dimensional action spaces. CASSL orders the sampling of training data based on control dimensions: the learning and sampling are focused on few control parameters before other parameters. The right curriculum for learning is suggested by variance-based global sensitivity analysis of the control space. We apply our CASSL framework to learning how to grasp using an adaptive, underactuated multi-fingered gripper, a challenging system to control. Our experimental results indicate that CASSL provides significant improvement and generalization compared to baseline methods such as staged curriculum learning (8% increase) and complete end-to-end learning with random exploration (14% improvement) tested on a set of novel objects

    Adaptive Motion Planning for Multi-fingered Functional Grasp via Force Feedback

    Full text link
    Enabling multi-fingered robots to grasp and manipulate objects with human-like dexterity is especially challenging during the dynamic, continuous hand-object interactions. Closed-loop feedback control is essential for dexterous hands to dynamically finetune hand poses when performing precise functional grasps. This work proposes an adaptive motion planning method based on deep reinforcement learning to adjust grasping poses according to real-time feedback from joint torques from pre-grasp to goal grasp. We find the multi-joint torques of the dexterous hand can sense object positions through contacts and collisions, enabling real-time adjustment of grasps to generate varying grasping trajectories for objects in different positions. In our experiments, the performance gap with and without force feedback reveals the important role of force feedback in adaptive manipulation. Our approach utilizing force feedback preliminarily exhibits human-like flexibility, adaptability, and precision.Comment: 8 pages,7 figure

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic
    • …
    corecore