10 research outputs found

    Multi-level neural networks for PDEs with uncertain parameters

    Get PDF
    A novel multi-level method for partial differential equations with uncertain parameters is proposed. The principle behind the method is that the error between grid levels in multi-level methods has a spatial structure that is by good approximation independent of the actual grid level. Our method learns this structure by employing a sequence of convolutional neural networks, that are well-suited to automatically detect local error features as latent quantities of the solution. Furthermore, by using the concept of transfer learning, the information of coarse grid levels is reused on fine grid levels in order to minimize the required number of samples on fine levels. The method outperforms state-of-the-art multi-level methods, especially in the case when complex PDEs (such as single-phase and free-surface flow problems) are concerned, or when high accuracy is required

    MATHICSE Technical Report: A non-intrusive multifidelity method for the reduced order modeling of nonlinear problems

    Get PDF
    We propose a non-intrusive reduced basis (RB) method for parametrized nonlinear partial differential equations (PDEs) that leverages models of different accuracy. The method extracts parameter locations from a collection of low-fidelity (LF) snapshots for the efficient creation of a high-fidelity (HF) reduced basis and employs multi-fidelity Gaussian process regression (GPR) to approximate the combination coefficients of the reduced basis. LF data is assimilated either via projection onto an LF basis or via an interpolation approach inspired by bifidelity reconstruction. The correlation between HF and LF data is modeled with hyperparameters whose values are automatically determined in the regression step. The proposed methods not only leverage the assimilated LF data to reduce the cost of the offline phase, but also allow for a fast evaluation during the online stage, independent of the computational cost of neither the low- nor the high-fidelity solution. Numerical studies demonstrate the effectiveness of the proposed approach on manufactured examples and problems in nonlinear structural mechanics. Clear benefits of using lower resolution models rather than reduced physics models are observed in both the basis selection and the regression step. An active learning scheme is used for additional snapshot selection at locations with high error. The speed-up in the online evaluation and the high accuracy of extracted quantities of interest makes the multifidelity RB method a powerful tool for outer-loop applications in engineering, as exemplified in uncertainty quantification

    Multi-level neural networks for PDEs with uncertain parameters

    Get PDF
    A novel multi-level method for partial differential equations with uncertain parameters is proposed. The principle behind the method is that the error between grid levels in multi-level methods has a spatial structure that is by good approximation independent of the actual grid level. Our method learns this structure by employing a sequence of convolutional neural networks, that are well-suited to automatically detect local error features as latent quantities of the solution. Furthermore, by using the concept of transfer learning, the information of coarse grid levels is reused on fine grid levels in order to minimize the required number of samples on fine levels. The method outperforms state-of-the-art multi-level methods, especially in the case when complex PDEs (such as single-phase and free-surface flow problems) are concerned, or when high accuracy is required

    Kontextsensitive Modellhierarchien für Quantifizierung der höherdimensionalen Unsicherheit

    Get PDF
    We formulate four novel context-aware algorithms based on model hierarchies aimed to enable an efficient quantification of uncertainty in complex, computationally expensive problems, such as fluid-structure interaction and plasma microinstability simulations. Our results show that our algorithms are more efficient than standard approaches and that they are able to cope with the challenges of quantifying uncertainty in higher-dimensional, complex problems.Wir formulieren vier kontextsensitive Algorithmen auf der Grundlage von Modellhierarchien um eine effiziente Quantifizierung der Unsicherheit bei komplexen, rechenintensiven Problemen zu ermöglichen, wie Fluid-Struktur-Wechselwirkungs- und Plasma-Mikroinstabilitätssimulationen. Unsere Ergebnisse zeigen, dass unsere Algorithmen effizienter als Standardansätze sind und die Herausforderungen der Quantifizierung der Unsicherheit in höherdimensionalen, komplexen Problemen bewältigen können
    corecore