6 research outputs found

    Fast Converging Evolutionary Strategy for Multi-Constraint QoS Routing in Computer Networks Using New Decoding Mechanism

    Get PDF
    In recent years, real-time multimedia applications' demands such as Voice-on-IP (VoIP) and video conference are extremely increased which require QoS routing. This type of routing has been considered as an NP-Complete problem since it requires satisfying multiple constraints. Many solutions have been proposed to solve it, but most of them are complex and time consuming. In this paper, a novel multi-constraints QoS routing algorithm is proposed based on Evolutionary Strategies (ES). The algorithm preserves simplicity and offers a feasible solution in a few numbers of generations. This is due to a novel gene decoding mechanism that is used in the algorithm; and consequently more simple evolutionary operators can be applied. The simulation results show that our method outperforms previous algorithms in terms of speed and performance, so that it is 2.6 and 11.3 times faster, and its success ratio is also better

    A green intelligent routing algorithm supporting flexible QoS for many-to-many multicast

    Get PDF
    The tremendous energy consumption attributed to the Information and Communication Technology (ICT) field has become a persistent concern during the last few years, attracting significant academic and industrial efforts. Networks have begun to be improved towards being “green”. Considering Quality of Service (QoS) and power consumption for green Internet, a Green Intelligent flexible QoS many-to-many Multicast routing algorithm (GIQM) is presented in this paper. In the proposed algorithm, a Rendezvous Point Confirming Stage (RPCS) is first carried out to obtain a rendezvous point and the candidate Many-to-many Multicast Sharing Tree (M2ST); then an Optimal Solution Identifying Stage (OSIS) is performed to generate a modified M2ST rooted at the rendezvous point, and an optimal M2ST is obtained by comparing the original M2ST and the modified M2ST. The network topology of Cernet2, GéANT and Internet2 were considered for the simulation of GIQM. The results from a series of experiments demonstrate the good performance and outstanding power-saving potential of the proposed GIQM with QoS satisfied

    QoS performance analysis of bit rate video streaming in next generation networks using TCP, UDP and a TCP+UDP hybrid

    Get PDF
    The growth in users streaming videos on the Internet has led to increased demand for improved video quality and reception. In next generation networks (NGNs), such as 3G and 4G LTE, quality of service (QoS) implementation is one of the ways in which good video quality and good video reception can be achieved. QoS mainly involves following an industry-wide set of standard metrics and mechanisms to achieve high-quality network performance in respect of video streaming. Adopting routing and communication protocols is one way QoS is implemented in NGNs. This article describes QoS of bit rate video streaming, and QoS performance analysis of video streaming, in relation to the main network transport protocols, namely transmission control protocol (TCP) and user datagram protocol (UDP). A simulation test bed was set up using OPNET modeller 14.5. In this setup, a network topology was created and duplicated three times, in order to configure two simulation scenarios (each using the distinct protocols), and a third simulation scenario using both protocols in hybrid form. The findings in the simulations indicated that, when a network is configured with both TCP and UDP protocols in video streaming, there is a positive change in the degree of performance in terms of the QoS of videostreaming applications, unlike when the protocols are used independently.CA2016www.wits.ac.za/linkcentre/aji

    A Software Defined Networking architecture for the Internet-of-Things

    Full text link
    corecore