4 research outputs found

    Portable clouds for provisioning of computing services in networks with very limited connectivity

    Get PDF
    In this paper, portable clouds are devised after observing similarities between providing the Internet access to users onboard vehicles and to users in remote resources-constrained communities. In both cases, a gateway connection to the core network is bandwidth-limited and unreliable. Portable clouds are intended to provide applications and services in scenarios even when the gateway link is not available at all for extended periods of time. Portable clouds exploit cache to store contents and provide computing resources locally while the applications are modified to facilitate acceptable QoE. The cache is updated infrequently and only when a fast connection becomes available, or when the contents are physically delivered to the cache using a memory medium

    Efficient Discovery and Utilization of Radio Information in Ultra-Dense Heterogeneous 3D Wireless Networks

    Get PDF
    Emergence of new applications, industrial automation and the explosive boost of smart concepts have led to an environment with rapidly increasing device densification and service diversification. This revolutionary upward trend has led the upcoming 6th-Generation (6G) and beyond communication systems to be globally available communication, computing and intelligent systems seamlessly connecting devices, services and infrastructure facilities. In this kind of environment, scarcity of radio resources would be upshot to an unimaginably high level compelling them to be very efficiently utilized. In this case, timely action is taken to deviate from approximate site-specific 2-Dimensional (2D) network concepts in radio resource utilization and network planning replacing them with more accurate 3-Dimensional (3D) network concepts while utilizing spatially distributed location-specific radio characteristics. Empowering this initiative, initially a framework is developed to accurately estimate the location-specific path loss parameters under dynamic environmental conditions in a 3D small cell (SC) heterogeneous networks (HetNets) facilitating efficient radio resource management schemes using crowdsensing data collection principle together with Linear Algebra (LA) and machine learning (ML) techniques. According to the results, the gradient descent technique is with the highest path loss parameter estimation accuracy which is over 98%. At a latter stage, receive signal power is calculated at a slightly extended 3D communication distances from the cluster boundaries based on already estimated propagation parameters with an accuracy of over 74% for certain distances. Coordination in both device-network and network-network interactions is also a critical factor in efficient radio resource utilization while meeting Quality of Service (QoS) requirements in heavily congested future 3D SCs HetNets. Then, overall communication performance enhancement through better utilization of spatially distributed opportunistic radio resources in a 3D SC is addressed with the device and network coordination, ML and Slotted-ALOHA principles together with scheduling, power control and access prioritization schemes. Within this solution, several communication related factors like 3D spatial positions and QoS requirements of the devices in two co-located networks operated in licensed band (LB) and unlicensed band (UB) are considered. To overcome the challenge of maintaining QoS under ongoing network densification and with limited radio resources cellular network traffic is offloaded to UB. Approximately, 70% better overall coordination efficiency is achieved at initial network access with the device network coordinated weighting factor based prioritization scheme powered with the Q-learning (QL) principle over conventional schemes. Subsequently, coverage information of nearby dense NR-Unlicensed (NR-U) base stations (BSs) is investigated for better allocation and utilization of common location-specific spatially distributed radio resources in UB. Firstly, the problem of determining the receive signal power at a given location due to a transmission done by a neighbor NR-U BS is addressed with a solution based on a deep regression neural network algorithm enabling to predict receive signal or interference power of a neighbor BS at a given location of a 3D cell. Subsequently, the problem of efficient radio resource management is considered while dynamically utilizing UB spectrum for NR-U transmissions through an algorithm based on the double Q-learning (DQL) principle and device collaboration. Over 200% faster algorithm convergence is achieved by the DQL based method over conventional solutions with estimated path loss parameters
    corecore