20 research outputs found

    XCon: Learning with Experts for Fine-grained Category Discovery

    Full text link
    We address the problem of generalized category discovery (GCD) in this paper, i.e. clustering the unlabeled images leveraging the information from a set of seen classes, where the unlabeled images could contain both seen classes and unseen classes. The seen classes can be seen as an implicit criterion of classes, which makes this setting different from unsupervised clustering where the cluster criteria may be ambiguous. We mainly concern the problem of discovering categories within a fine-grained dataset since it is one of the most direct applications of category discovery, i.e. helping experts discover novel concepts within an unlabeled dataset using the implicit criterion set forth by the seen classes. State-of-the-art methods for generalized category discovery leverage contrastive learning to learn the representations, but the large inter-class similarity and intra-class variance pose a challenge for the methods because the negative examples may contain irrelevant cues for recognizing a category so the algorithms may converge to a local-minima. We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images by first partitioning the dataset into sub-datasets using k-means clustering and then performing contrastive learning on each of the sub-datasets to learn fine-grained discriminative features. Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method

    Automatically Discovering and Learning New Visual Categories with Ranking Statistics

    Full text link
    We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes. This setting is similar to semi-supervised learning, but significantly harder because there are no labelled examples for the new classes. The challenge, then, is to leverage the information contained in the labelled images in order to learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data. In this work we address this problem by combining three ideas: (1) we suggest that the common approach of bootstrapping an image representation using the labeled data only introduces an unwanted bias, and that this can be avoided by using self-supervised learning to train the representation from scratch on the union of labelled and unlabelled data; (2) we use rank statistics to transfer the model's knowledge of the labelled classes to the problem of clustering the unlabelled images; and, (3) we train the data representation by optimizing a joint objective function on the labelled and unlabelled subsets of the data, improving both the supervised classification of the labelled data, and the clustering of the unlabelled data. We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.Comment: ICLR 2020, code: http://www.robots.ox.ac.uk/~vgg/research/auto_nove

    Automatically Discovering Novel Visual Categories with Self-supervised Prototype Learning

    Full text link
    This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections. The NCD task is challenging due to the closeness to the real-world scenarios, where we have only encountered some partial classes and images. Unlike other works on the NCD, we leverage the prototypes to emphasize the importance of category discrimination and alleviate the issue of missing annotations of novel classes. Concretely, we propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training. In the first stage, we obtain a robust feature extractor, which could serve for all images with base and novel categories. This ability of instance and category discrimination of the feature extractor is boosted by self-supervised learning and adaptive prototypes. In the second stage, we utilize the prototypes again to rectify offline pseudo labels and train a final parametric classifier for category clustering. We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.Comment: In Submissio

    Demystifying Assumptions in Learning to Discover Novel Classes

    Full text link
    In learning to discover novel classes (L2DNC), we are given labeled data from seen classes and unlabeled data from unseen classes, and we train clustering models for the unseen classes. However, the rigorous definition of L2DNC is unexplored, which results in that its implicit assumptions are still unclear. In this paper, we demystify assumptions behind L2DNC and find that high-level semantic features should be shared among the seen and unseen classes. This naturally motivates us to link L2DNC to meta-learning that has exactly the same assumption as L2DNC. Based on this finding, L2DNC is not only theoretically solvable, but can also be empirically solved by meta-learning algorithms after slight modifications. This L2DNC methodology significantly reduces the amount of unlabeled data needed for training and makes it more practical, as demonstrated in experiments. The use of very limited data is also justified by the application scenario of L2DNC: since it is unnatural to label only seen-class data, L2DNC is sampling instead of labeling in causality. Therefore, unseen-class data should be collected on the way of collecting seen-class data, which is why they are novel and first need to be clustered

    ClusterNet: A Perception-Based Clustering Model for Scattered Data

    Full text link
    Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.Comment: Currently, this manuscript is under revision at TVC
    corecore