1,332 research outputs found

    Quadruplet Network with One-Shot Learning for Fast Visual Object Tracking

    Full text link
    In the same vein of discriminative one-shot learning, Siamese networks allow recognizing an object from a single exemplar with the same class label. However, they do not take advantage of the underlying structure of the data and the relationship among the multitude of samples as they only rely on pairs of instances for training. In this paper, we propose a new quadruplet deep network to examine the potential connections among the training instances, aiming to achieve a more powerful representation. We design four shared networks that receive multi-tuple of instances as inputs and are connected by a novel loss function consisting of pair-loss and triplet-loss. According to the similarity metric, we select the most similar and the most dissimilar instances as the positive and negative inputs of triplet loss from each multi-tuple. We show that this scheme improves the training performance. Furthermore, we introduce a new weight layer to automatically select suitable combination weights, which will avoid the conflict between triplet and pair loss leading to worse performance. We evaluate our quadruplet framework by model-free tracking-by-detection of objects from a single initial exemplar in several Visual Object Tracking benchmarks. Our extensive experimental analysis demonstrates that our tracker achieves superior performance with a real-time processing speed of 78 frames-per-second (fps)

    DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking

    Full text link
    Convolutional Siamese neural networks have been recently used to track objects using deep features. Siamese architecture can achieve real time speed, however it is still difficult to find a Siamese architecture that maintains the generalization capability, high accuracy and speed while decreasing the number of shared parameters especially when it is very deep. Furthermore, a conventional Siamese architecture usually processes one local neighborhood at a time, which makes the appearance model local and non-robust to appearance changes. To overcome these two problems, this paper proposes DensSiam, a novel convolutional Siamese architecture, which uses the concept of dense layers and connects each dense layer to all layers in a feed-forward fashion with a similarity-learning function. DensSiam also includes a Self-Attention mechanism to force the network to pay more attention to the non-local features during offline training. Extensive experiments are performed on four tracking benchmarks: OTB2013 and OTB2015 for validation set; and VOT2015, VOT2016 and VOT2017 for testing set. The obtained results show that DensSiam achieves superior results on these benchmarks compared to other current state-of-the-art methods.Comment: 11 pages, 3 figures, Accepted by ISVC1

    SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks

    Full text link
    Siamese network based trackers formulate tracking as convolutional feature cross-correlation between target template and searching region. However, Siamese trackers still have accuracy gap compared with state-of-the-art algorithms and they cannot take advantage of feature from deep networks, such as ResNet-50 or deeper. In this work we prove the core reason comes from the lack of strict translation invariance. By comprehensive theoretical analysis and experimental validations, we break this restriction through a simple yet effective spatial aware sampling strategy and successfully train a ResNet-driven Siamese tracker with significant performance gain. Moreover, we propose a new model architecture to perform depth-wise and layer-wise aggregations, which not only further improves the accuracy but also reduces the model size. We conduct extensive ablation studies to demonstrate the effectiveness of the proposed tracker, which obtains currently the best results on four large tracking benchmarks, including OTB2015, VOT2018, UAV123, and LaSOT. Our model will be released to facilitate further studies based on this problem.Comment: 9 page

    A Twofold Siamese Network for Real-Time Object Tracking

    Full text link
    Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similarity-learning Siamese network. An important design choice in SA-Siam is to separately train the two branches to keep the heterogeneity of the two types of features. In addition, we propose a channel attention mechanism for the semantic branch. Channel-wise weights are computed according to the channel activations around the target position. While the inherited architecture from SiamFC \cite{SiamFC} allows our tracker to operate beyond real-time, the twofold design and the attention mechanism significantly improve the tracking performance. The proposed SA-Siam outperforms all other real-time trackers by a large margin on OTB-2013/50/100 benchmarks.Comment: Accepted by CVPR'1

    An In-Depth Analysis of Visual Tracking with Siamese Neural Networks

    Full text link
    This survey presents a deep analysis of the learning and inference capabilities in nine popular trackers. It is neither intended to study the whole literature nor is it an attempt to review all kinds of neural networks proposed for visual tracking. We focus instead on Siamese neural networks which are a promising starting point for studying the challenging problem of tracking. These networks integrate efficiently feature learning and the temporal matching and have so far shown state-of-the-art performance. In particular, the branches of Siamese networks, their layers connecting these branches, specific aspects of training and the embedding of these networks into the tracker are highlighted. Quantitative results from existing papers are compared with the conclusion that the current evaluation methodology shows problems with the reproducibility and the comparability of results. The paper proposes a novel Lisp-like formalism for a better comparison of trackers. This assumes a certain functional design and functional decomposition of trackers. The paper tries to give foundation for tracker design by a formulation of the problem based on the theory of machine learning and by the interpretation of a tracker as a decision function. The work concludes with promising lines of research and suggests future work.Comment: submitted to IEEE TPAM

    Rotation Adaptive Visual Object Tracking with Motion Consistency

    Full text link
    Visual Object tracking research has undergone significant improvement in the past few years. The emergence of tracking by detection approach in tracking paradigm has been quite successful in many ways. Recently, deep convolutional neural networks have been extensively used in most successful trackers. Yet, the standard approach has been based on correlation or feature selection with minimal consideration given to motion consistency. Thus, there is still a need to capture various physical constraints through motion consistency which will improve accuracy, robustness and more importantly rotation adaptiveness. Therefore, one of the major aspects of this paper is to investigate the outcome of rotation adaptiveness in visual object tracking. Among other key contributions, the paper also includes various consistencies that turn out to be extremely effective in numerous challenging sequences than the current state-of-the-art.Comment: Accepted conference paper WACV 201

    Prediction-Tracking-Segmentation

    Full text link
    We introduce a prediction driven method for visual tracking and segmentation in videos. Instead of solely relying on matching with appearance cues for tracking, we build a predictive model which guides finding more accurate tracking regions efficiently. With the proposed prediction mechanism, we improve the model robustness against distractions and occlusions during tracking. We demonstrate significant improvements over state-of-the-art methods not only on visual tracking tasks (VOT 2016 and VOT 2018) but also on video segmentation datasets (DAVIS 2016 and DAVIS 2017)

    Learning regression and verification networks for long-term visual tracking

    Full text link
    Compared with short-term tracking, the long-term tracking task requires determining the tracked object is present or absent, and then estimating the accurate bounding box if present or conducting image-wide re-detection if absent. Until now, few attempts have been done although this task is much closer to designing practical tracking systems. In this work, we propose a novel long-term tracking framework based on deep regression and verification networks. The offline-trained regression model is designed using the object-aware feature fusion and region proposal networks to generate a series of candidates and estimate their similarity scores effectively. The verification network evaluates these candidates to output the optimal one as the tracked object with its classification score, which is online updated to adapt to the appearance variations based on newly reliable observations. The similarity and classification scores are combined to obtain a final confidence value, based on which our tracker can determine the absence of the target accurately and conduct image-wide re-detection to capture the target successfully when it reappears. Extensive experiments show that our tracker achieves the best performance on the VOT2018 long-term challenge and state-of-the-art results on the OxUvA long-term dataset.Comment: 9 page

    Unsupervised Deep Tracking

    Full text link
    We propose an unsupervised visual tracking method in this paper. Different from existing approaches using extensive annotated data for supervised learning, our CNN model is trained on large-scale unlabeled videos in an unsupervised manner. Our motivation is that a robust tracker should be effective in both the forward and backward predictions (i.e., the tracker can forward localize the target object in successive frames and backtrace to its initial position in the first frame). We build our framework on a Siamese correlation filter network, which is trained using unlabeled raw videos. Meanwhile, we propose a multiple-frame validation method and a cost-sensitive loss to facilitate unsupervised learning. Without bells and whistles, the proposed unsupervised tracker achieves the baseline accuracy of fully supervised trackers, which require complete and accurate labels during training. Furthermore, unsupervised framework exhibits a potential in leveraging unlabeled or weakly labeled data to further improve the tracking accuracy.Comment: to appear in CVPR 201

    FANTrack: 3D Multi-Object Tracking with Feature Association Network

    Full text link
    We propose a data-driven approach to online multi-object tracking (MOT) that uses a convolutional neural network (CNN) for data association in a tracking-by-detection framework. The problem of multi-target tracking aims to assign noisy detections to a-priori unknown and time-varying number of tracked objects across a sequence of frames. A majority of the existing solutions focus on either tediously designing cost functions or formulating the task of data association as a complex optimization problem that can be solved effectively. Instead, we exploit the power of deep learning to formulate the data association problem as inference in a CNN. To this end, we propose to learn a similarity function that combines cues from both image and spatial features of objects. Our solution learns to perform global assignments in 3D purely from data, handles noisy detections and a varying number of targets, and is easy to train. We evaluate our approach on the challenging KITTI dataset and show competitive results. Our code is available at https://git.uwaterloo.ca/wise-lab/fantrack.Comment: 8 pages, 10 figures, IEEE Intelligent Vehicles Symposium (IV 19
    corecore