129,123 research outputs found

    Scale Attention for Learning Deep Face Representation: A Study Against Visual Scale Variation

    Full text link
    Human face images usually appear with wide range of visual scales. The existing face representations pursue the bandwidth of handling scale variation via multi-scale scheme that assembles a finite series of predefined scales. Such multi-shot scheme brings inference burden, and the predefined scales inevitably have gap from real data. Instead, learning scale parameters from data, and using them for one-shot feature inference, is a decent solution. To this end, we reform the conv layer by resorting to the scale-space theory, and achieve two-fold facilities: 1) the conv layer learns a set of scales from real data distribution, each of which is fulfilled by a conv kernel; 2) the layer automatically highlights the feature at the proper channel and location corresponding to the input pattern scale and its presence. Then, we accomplish the hierarchical scale attention by stacking the reformed layers, building a novel style named SCale AttentioN Conv Neural Network (\textbf{SCAN-CNN}). We apply SCAN-CNN to the face recognition task and push the frontier of SOTA performance. The accuracy gain is more evident when the face images are blurry. Meanwhile, as a single-shot scheme, the inference is more efficient than multi-shot fusion. A set of tools are made to ensure the fast training of SCAN-CNN and zero increase of inference cost compared with the plain CNN

    Continual Robot Learning using Self-Supervised Task Inference

    Full text link
    Endowing robots with the human ability to learn a growing set of skills over the course of a lifetime as opposed to mastering single tasks is an open problem in robot learning. While multi-task learning approaches have been proposed to address this problem, they pay little attention to task inference. In order to continually learn new tasks, the robot first needs to infer the task at hand without requiring predefined task representations. In this paper, we propose a self-supervised task inference approach. Our approach learns action and intention embeddings from self-organization of the observed movement and effect parts of unlabeled demonstrations and a higher-level behavior embedding from self-organization of the joint action-intention embeddings. We construct a behavior-matching self-supervised learning objective to train a novel Task Inference Network (TINet) to map an unlabeled demonstration to its nearest behavior embedding, which we use as the task representation. A multi-task policy is built on top of the TINet and trained with reinforcement learning to optimize performance over tasks. We evaluate our approach in the fixed-set and continual multi-task learning settings with a humanoid robot and compare it to different multi-task learning baselines. The results show that our approach outperforms the other baselines, with the difference being more pronounced in the challenging continual learning setting, and can infer tasks from incomplete demonstrations. Our approach is also shown to generalize to unseen tasks based on a single demonstration in one-shot task generalization experiments.Comment: Accepted for publication in IEEE Transactions on Cognitive and Developmental System

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI
    • …
    corecore