6,853 research outputs found

    A new Potential-Based Reward Shaping for Reinforcement Learning Agent

    Full text link
    Potential-based reward shaping (PBRS) is a particular category of machine learning methods which aims to improve the learning speed of a reinforcement learning agent by extracting and utilizing extra knowledge while performing a task. There are two steps in the process of transfer learning: extracting knowledge from previously learned tasks and transferring that knowledge to use it in a target task. The latter step is well discussed in the literature with various methods being proposed for it, while the former has been explored less. With this in mind, the type of knowledge that is transmitted is very important and can lead to considerable improvement. Among the literature of both the transfer learning and the potential-based reward shaping, a subject that has never been addressed is the knowledge gathered during the learning process itself. In this paper, we presented a novel potential-based reward shaping method that attempted to extract knowledge from the learning process. The proposed method extracts knowledge from episodes' cumulative rewards. The proposed method has been evaluated in the Arcade learning environment and the results indicate an improvement in the learning process in both the single-task and the multi-task reinforcement learner agents

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    Open-ended Learning in Symmetric Zero-sum Games

    Get PDF
    Zero-sum games such as chess and poker are, abstractly, functions that evaluate pairs of agents, for example labeling them `winner' and `loser'. If the game is approximately transitive, then self-play generates sequences of agents of increasing strength. However, nontransitive games, such as rock-paper-scissors, can exhibit strategic cycles, and there is no longer a clear objective -- we want agents to increase in strength, but against whom is unclear. In this paper, we introduce a geometric framework for formulating agent objectives in zero-sum games, in order to construct adaptive sequences of objectives that yield open-ended learning. The framework allows us to reason about population performance in nontransitive games, and enables the development of a new algorithm (rectified Nash response, PSRO_rN) that uses game-theoretic niching to construct diverse populations of effective agents, producing a stronger set of agents than existing algorithms. We apply PSRO_rN to two highly nontransitive resource allocation games and find that PSRO_rN consistently outperforms the existing alternatives.Comment: ICML 2019, final versio
    • …
    corecore