3,596 research outputs found

    A Covariant Information-Density Cutoff in Curved Space-Time

    Full text link
    In information theory, the link between continuous information and discrete information is established through well-known sampling theorems. Sampling theory explains, for example, how frequency-filtered music signals are reconstructible perfectly from discrete samples. In this Letter, sampling theory is generalized to pseudo-Riemannian manifolds. This provides a new set of mathematical tools for the study of space-time at the Planck scale: theories formulated on a differentiable space-time manifold can be completely equivalent to lattice theories. There is a close connection to generalized uncertainty relations which have appeared in string theory and other studies of quantum gravity.Comment: 4 pages, RevTe

    Abelian Monopole and Center Vortex Views at the Multi-Instanton Gas

    Get PDF
    We consider full non-Abelian, Abelian and center projected lattice field configurations built up from random instanton gas configurations in the continuum. We study the instanton contribution to the QˉQ\bar{Q}Q force with respect to ({\it i}) instanton density dependence, ({\it ii}) Casimir scaling and ({\it iii}) whether various versions of Abelian dominance hold. We check that the dilute gas formulation for the interaction potential gives an reliable approximation only for densities small compared to the phenomenological value. We find that Casimir scaling does not hold, confirming earlier statements in the literature. We show that the lattice used to discretize the instanton gas configurations has to be sufficiently coarse (a2ρˉa \approx 2\bar{\rho} compared with the instanton size ρˉ\bar{\rho}) such that maximal Abelian gauge projection and center projection as well as the monopole gas contribution to the QˉQ\bar{Q}Q force reproduce the non-Abelian instanton-mediated force in the intermediate range of linear quasi-confinement. We demonstrate that monopole clustering also depends critically on the discretization scale confirming earlier findings based on monopole blocking.Comment: 21 pages, 22 Postscript figure

    Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos

    Get PDF
    In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos the low energy features of the dynamics as confinement and bound state mass spectrum are investigated. The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step multi-bosonic dynamical fermion algorithm is discussed.Comment: latex, 48 pages, 16 figures with epsfi
    corecore