22 research outputs found

    Multi-view PointNet for 3D Scene Understanding

    Full text link
    Fusion of 2D images and 3D point clouds is important because information from dense images can enhance sparse point clouds. However, fusion is challenging because 2D and 3D data live in different spaces. In this work, we propose MVPNet (Multi-View PointNet), where we aggregate 2D multi-view image features into 3D point clouds, and then use a point based network to fuse the features in 3D canonical space to predict 3D semantic labels. To this end, we introduce view selection along with a 2D-3D feature aggregation module. Extensive experiments show the benefit of leveraging features from dense images and reveal superior robustness to varying point cloud density compared to 3D-only methods. On the ScanNetV2 benchmark, our MVPNet significantly outperforms prior point cloud based approaches on the task of 3D Semantic Segmentation. It is much faster to train than the large networks of the sparse voxel approach. We provide solid ablation studies to ease the future design of 2D-3D fusion methods and their extension to other tasks, as we showcase for 3D instance segmentation.Comment: Geometry Meets Deep Learning Workshop, ICCV 201

    NOC: High-Quality Neural Object Cloning with 3D Lifting of Segment Anything

    Full text link
    With the development of the neural field, reconstructing the 3D model of a target object from multi-view inputs has recently attracted increasing attention from the community. Existing methods normally learn a neural field for the whole scene, while it is still under-explored how to reconstruct a certain object indicated by users on-the-fly. Considering the Segment Anything Model (SAM) has shown effectiveness in segmenting any 2D images, in this paper, we propose Neural Object Cloning (NOC), a novel high-quality 3D object reconstruction method, which leverages the benefits of both neural field and SAM from two aspects. Firstly, to separate the target object from the scene, we propose a novel strategy to lift the multi-view 2D segmentation masks of SAM into a unified 3D variation field. The 3D variation field is then projected into 2D space and generates the new prompts for SAM. This process is iterative until convergence to separate the target object from the scene. Then, apart from 2D masks, we further lift the 2D features of the SAM encoder into a 3D SAM field in order to improve the reconstruction quality of the target object. NOC lifts the 2D masks and features of SAM into the 3D neural field for high-quality target object reconstruction. We conduct detailed experiments on several benchmark datasets to demonstrate the advantages of our method. The code will be released

    Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

    Full text link
    Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.Comment: ECCV 202

    One Point is All You Need: Directional Attention Point for Feature Learning

    Full text link
    We present a novel attention-based mechanism for learning enhanced point features for tasks such as point cloud classification and segmentation. Our key message is that if the right attention point is selected, then "one point is all you need" -- not a sequence as in a recurrent model and not a pre-selected set as in all prior works. Also, where the attention point is should be learned, from data and specific to the task at hand. Our mechanism is characterized by a new and simple convolution, which combines the feature at an input point with the feature at its associated attention point. We call such a point a directional attention point (DAP), since it is found by adding to the original point an offset vector that is learned by maximizing the task performance in training. We show that our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks such as ModelNet40, ShapeNetPart, and S3DIS demonstrate that our DAP-enabled networks consistently outperform the respective original networks, as well as all other competitive alternatives, including those employing pre-selected sets of attention points

    JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds

    Full text link
    Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the learning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENetComment: Accepted to ECCV 2020, supplementary materials include
    corecore