905 research outputs found

    Radio resource allocation in relay based OFDMA cellular networks

    Get PDF
    PhDAdding relay stations (RS) between the base station (BS) and the mobile stations (MS) in a cellular system can extend network coverage, overcome multi-path fading and increase the capacity of the system. This thesis considers the radio resource allocation scheme in relay based cellular networks to ensure high-speed and reliable communication. The goal of this research is to investigate user fairness, system throughput and power consumption in wireless relay networks through considering how best to manage the radio resource. This thesis proposes a two-hop proportional fairness (THPF) scheduling scheme fair allocation, which is considered both in the first time subslot between direct link users and relay stations, and the second time subslot among relay link users. A load based relay selection algorithm is also proposed for a fair resource allocation. The transmission mode (direct transmission mode or relay transmission mode) of each user will be adjusted based on the load of the transmission node. Power allocation is very important for resource efficiency and system performance improvement and this thesis proposes a two-hop power allocation algorithm for energy efficiency, which adjusts the transmission power of the BS and RSs to make the data rate on the two hop links of one RS match each other. The power allocation problem of multiple cells with inter-cell interference is studied. A new multi-cell power allocation scheme is proposed from non-cooperative game theory; this coordinates the inter-cell interference and operates in a distributed manner. The utility function can be designed for throughput improvement and user fairness respectively. Finally, the proposed algorithms in this thesis are combined, and the system performance is evaluated. The joint radio resource allocation algorithm can achieve a very good tradeoff between throughput and user fairness, and also can significantly improve energy efficiency

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Improvement of indoor VLC network downlink scheduling and resource allocation

    Get PDF
    Indoor visible light communications (VLC) combines illumination and communication by utilizing the high-modulation-speed of LEDs. VLC is anticipated to be complementary to radio frequency communications and an important part of next generation heterogeneous networks. In order to make the maximum use of VLC technology in a networking environment, we need to expand existing research from studies of traditional point-to-point links to encompass scheduling and resource allocation related to multi-user scenarios. This work aims to maximize the downlink throughput of an indoor VLC network, while taking both user fairness and time latency into consideration. Inter-user interference is eliminated by appropriately allocating LEDs to users with the aid of graph theory. A three-term priority factor model is derived and is shown to improve the throughput performance of the network scheduling scheme over those previously reported. Simulations of VLC downlink scheduling have been performed under proportional fairness scheduling principles where our newly formulated priority factor model has been applied. The downlink throughput is improved by 19.6% compared to previous two-term priority models, while achieving similar fairness and latency performance. When the number of users grows larger, the three-term priority model indicates an improvement in Fairness performance compared to two-term priority model scheduling

    Planning for Small Cells in a Cellular Network

    Get PDF
    In this thesis, we analyze the effect of deploying small cells on the performance of a network comprising several macro cells. We identify potential locations for low-power base-stations based on the coverage patterns of the macro cells and propose three schemes for placing the small cells. We show that by judiciously installing just two small cells for every macro base-station at these locations and allocating separate resources to all the small cells on a global level, we can increase the performance of the network significantly (~ 45%). An added benefit of our schemes is that we can switch o the macro base-stations at night (when the number of active users is low) and significantly reduce their operation cost.4 month

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies
    • …
    corecore