8 research outputs found

    Improving MPI Threading Support for Current Hardware Architectures

    Get PDF
    Threading support for Message Passing Interface (MPI) has been defined in the MPI standard for more than twenty years. While many standard-compliance MPI implementations fully support multithreading, the threading support in MPI still cannot provide the optimal performance on the same level as the non-threading environment. The performance disparity leads to low adoption rate from applications, and eventually, lesser interest in optimizing MPI threading support. However, with the current advancement in computation hardware, the number of CPU core per packet is growing drastically. Using shared-memory MPI communication has become more costly. MPI threading without local communication is one of the alternatives and the some interests are shifting back toward threading to MPI.In this work, we investigate different approaches to leverage the power of thread parallelism and tools to help us to raise the multi-threaded MPI performance to reasonable level. We propose a novel multi-threaded MPI benchmark with multiple communication patterns to stress multiple points of the MPI implementation, with the ability to switch between using MPI process and threads for quick comparison between two modes. Enabling the us, and the others MPI developers to stress test their implementation design.We address the interoperability between MPI implementation and threading frameworks by introducing the thread-synchronization object, an object that gives the MPI implementation more control over user-level thread, allowing for more thread utilization in MPI. In our implementation, the synchronization object relieves the lock contention on the internal progress engine and able to achieve up to 7x the performance of the original implementation. Moving forward, we explore the possibility of harnessing the true thread concurrency. We proposed several strategies to address the bottlenecks in MPI implementation. From our evaluation, with our novel threading optimization, we can achieve up to 22x the performance comparing to the legacy MPI designs

    Fast and generic concurrent message-passing

    Get PDF
    Communication hardware and software have a significant impact on the performance of clusters and supercomputers. Message passing model and the Message-Passing Interface (MPI) is a widely used model of communications in the High-Performance Computing (HPC) community with great success. However, it has recently faced new challenges due to the emergence of many-core architecture and of programming models with dynamic task parallelism, assuming a large number of concurrent, light-weight threads. These applications come from important classes of applications such as graph and data analytics. Using MPI with these languages/runtimes is inefficient because MPI implementation is not able to perform well with threads. Using MPI as a communication middleware is also not efficient since MPI has to provide many abstractions that are not needed for many of the frameworks, thus having extra overheads. In this thesis, we studied MPI performance under the new assumptions. We identified several factors in the message-passing model which were inherently problematic for scalability and performance. Next, we analyzed the communication of a number of graph, threading and data-flow frameworks to identify generic patterns. We then proposed a low-level communication interface (LCI) to bridge the gap between communication architecture and runtime. The core of our idea is to attach to each message a few simple operations which fit better with the current hardware and can be implemented efficiently. We show that with only a few carefully chosen primitives and appropriate design, message-passing under this interface can easily outperform production MPI when running atop of multi-threaded environment. Further, using LCI is simple for various types of usage

    Dynamic Adaptable Asynchronous Progress Model for MPI RMA Multiphase Applications

    Get PDF
    Casper is a process-based asynchronous progress model for MPI one-sided communication on multi- and many-core architectures. The one-sided communication is not truly one-sided in most MPI implementations: the target process still relies on software progress to complete incoming operations. Casper allows the user to specify an arbitrary number of cores dedicated to background ghost processes and transparently redirects the RMA operations to ghost processes by utilizing the PMPI redirection and MPI-3 shared-memory technologies. Although Casper benefits applications that suffer from lack of asynchronous progress, the operation redirection design might not support complex multiphase applications effectively, which often involve dynamically changing communication density and computing workloads. In this paper, we present an adaptive mechanism in Casper to address the limitation of static asynchronous progress in multiphase applications. We exploit two adaptive strategies, a user-guided strategy and a fully transparent and automatic strategy based on self-profiling and prediction, to dynamically reconfigure the asynchronous progress in Casper according to real-time performance characteristics during multiphase execution. We evaluate the adaptive approaches in both microbenchmarks and a real quantum chemistry application suite, NWChem, on the Cray XC30 supercomputer and an Intel Omni-Path cluster.This material was based upon work supported by the U.S. Dept. of Energy, Office of Science, Advanced Scientific Computing Research (SC-21), under contract DE-AC02- 06CH11357. The experimental resources for this paper were provided by the National Energy Research Scientific Computing Center (NERSC) on the Edison Cray XC30 supercomputer and by the Laboratory Computing Resource Center on the Bebop cluster at Argonne National Laboratory. Antonio J. Peña is co-financed by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.Peer ReviewedPostprint (author's final draft

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis
    corecore