74,935 research outputs found

    A Survey of Heterogeneous Information Network Analysis

    Full text link
    Most real systems consist of a large number of interacting, multi-typed components, while most contemporary researches model them as homogeneous networks, without distinguishing different types of objects and links in the networks. Recently, more and more researchers begin to consider these interconnected, multi-typed data as heterogeneous information networks, and develop structural analysis approaches by leveraging the rich semantic meaning of structural types of objects and links in the networks. Compared to widely studied homogeneous network, the heterogeneous information network contains richer structure and semantic information, which provides plenty of opportunities as well as a lot of challenges for data mining. In this paper, we provide a survey of heterogeneous information network analysis. We will introduce basic concepts of heterogeneous information network analysis, examine its developments on different data mining tasks, discuss some advanced topics, and point out some future research directions.Comment: 45 pages, 12 figure

    A Multi-Disciplinary Review of Knowledge Acquisition Methods: From Human to Autonomous Eliciting Agents

    Full text link
    This paper offers a multi-disciplinary review of knowledge acquisition methods in human activity systems. The review captures the degree of involvement of various types of agencies in the knowledge acquisition process, and proposes a classification with three categories of methods: the human agent, the human-inspired agent, and the autonomous machine agent methods. In the first two categories, the acquisition of knowledge is seen as a cognitive task analysis exercise, while in the third category knowledge acquisition is treated as an autonomous knowledge-discovery endeavour. The motivation for this classification stems from the continuous change over time of the structure, meaning and purpose of human activity systems, which are seen as the factor that fuelled researchers' and practitioners' efforts in knowledge acquisition for more than a century. We show through this review that the KA field is increasingly active due to the higher and higher pace of change in human activity, and conclude by discussing the emergence of a fourth category of knowledge acquisition methods, which are based on red-teaming and co-evolution

    State of the Art, Evaluation and Recommendations regarding "Document Processing and Visualization Techniques"

    Full text link
    Several Networks of Excellence have been set up in the framework of the European FP5 research program. Among these Networks of Excellence, the NEMIS project focuses on the field of Text Mining. Within this field, document processing and visualization was identified as one of the key topics and the WG1 working group was created in the NEMIS project, to carry out a detailed survey of techniques associated with the text mining process and to identify the relevant research topics in related research areas. In this document we present the results of this comprehensive survey. The report includes a description of the current state-of-the-art and practice, a roadmap for follow-up research in the identified areas, and recommendations for anticipated technological development in the domain of text mining.Comment: 54 pages, Report of Working Group 1 for the European Network of Excellence (NoE) in Text Mining and its Applications in Statistics (NEMIS

    Toward a Distributed Knowledge Discovery system for Grid systems

    Full text link
    During the last decade or so, we have had a deluge of data from not only science fields but also industry and commerce fields. Although the amount of data available to us is constantly increasing, our ability to process it becomes more and more difficult. Efficient discovery of useful knowledge from these datasets is therefore becoming a challenge and a massive economic need. This led to the need of developing large-scale data mining (DM) techniques to deal with these huge datasets either from science or economic applications. In this chapter, we present a new DDM system combining dataset-driven and architecture-driven strategies. Data-driven strategies will consider the size and heterogeneity of the data, while architecture driven will focus on the distribution of the datasets. This system is based on a Grid middleware tools that integrate appropriate large data manipulation operations. Therefore, this allows more dynamicity and autonomicity during the mining, integrating and processing phase

    Network Vector: Distributed Representations of Networks with Global Context

    Full text link
    We propose a neural embedding algorithm called Network Vector, which learns distributed representations of nodes and the entire networks simultaneously. By embedding networks in a low-dimensional space, the algorithm allows us to compare networks in terms of structural similarity and to solve outstanding predictive problems. Unlike alternative approaches that focus on node level features, we learn a continuous global vector that captures each node's global context by maximizing the predictive likelihood of random walk paths in the network. Our algorithm is scalable to real world graphs with many nodes. We evaluate our algorithm on datasets from diverse domains, and compare it with state-of-the-art techniques in node classification, role discovery and concept analogy tasks. The empirical results show the effectiveness and the efficiency of our algorithm

    Multi Relational Data Mining Approaches: A Data Mining Technique

    Full text link
    The multi relational data mining approach has developed as an alternative way for handling the structured data such that RDBMS. This will provides the mining in multiple tables directly. In MRDM the patterns are available in multiple tables (relations) from a relational database. As the data are available over the many tables which will affect the many problems in the practice of the data mining. To deal with this problem, one either constructs a single table by Propositionalisation, or uses a Multi-Relational Data Mining algorithm. MRDM approaches have been successfully applied in the area of bioinformatics. Three popular pattern finding techniques classification, clustering and association are frequently used in MRDM. Multi relational approach has developed as an alternative for analyzing the structured data such as relational database. MRDM allowing applying directly in the data mining in multiple tables. To avoid the expensive joining operations and semantic losses we used the MRDM technique. This paper focuses some of the application areas of MRDM and feature directions as well as the comparison of ILP, GM, SSDM and MRDMComment: 10 pages, 1 Figure, 3 Tables "Published with International Journal of Computer Applications (IJCA)

    Combining complex networks and data mining: why and how

    Full text link
    The increasing power of computer technology does not dispense with the need to extract meaningful in- formation out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.Comment: 58 pages, 19 figure

    ABACUS: frequent pAttern mining-BAsed Community discovery in mUltidimensional networkS

    Full text link
    Community Discovery in complex networks is the problem of detecting, for each node of the network, its membership to one of more groups of nodes, the communities, that are densely connected, or highly interactive, or, more in general, similar, according to a similarity function. So far, the problem has been widely studied in monodimensional networks, i.e. networks where only one connection between two entities can exist. However, real networks are often multidimensional, i.e., multiple connections between any two nodes can exist, either reflecting different kinds of relationships, or representing different values of the same type of tie. In this context, the problem of Community Discovery has to be redefined, taking into account multidimensional structure of the graph. We define a new concept of community that groups together nodes sharing memberships to the same monodimensional communities in the different single dimensions. As we show, such communities are meaningful and able to group highly correlated nodes, even if they might not be connected in any of the monodimensional networks. We devise ABACUS (Apriori-BAsed Community discoverer in mUltidimensional networkS), an algorithm that is able to extract multidimensional communities based on the apriori itemset miner applied to monodimensional community memberships. Experiments on two different real multidimensional networks confirm the meaningfulness of the introduced concepts, and open the way for a new class of algorithms for community discovery that do not rely on the dense connections among nodes

    The Survey of Data Mining Applications And Feature Scope

    Full text link
    In this paper we have focused a variety of techniques, approaches and different areas of the research which are helpful and marked as the important field of data mining Technologies. As we are aware that many Multinational companies and large organizations are operated in different places of the different countries.Each place of operation may generate large volumes of data. Corporate decision makers require access from all such sources and take strategic decisions.The data warehouse is used in the significant business value by improving the effectiveness of managerial decision-making. In an uncertain and highly competitive business environment, the value of strategic information systems such as these are easily recognized however in todays business environment,efficiency or speed is not the only key for competitiveness.This type of huge amount of data are available in the form of tera-topeta-bytes which has drastically changed in the areas of science and engineering.To analyze,manage and make a decision of such type of huge amount of data we need techniques called the data mining which will transforming in many fields.This paper imparts more number of applications of the data mining and also focuses scope of the data mining which will helpful in the further research.Comment: International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), Vol.2, No.3, June 2012, 16 pages, 1 tabl

    Online Machine Learning in Big Data Streams

    Full text link
    The area of online machine learning in big data streams covers algorithms that are (1) distributed and (2) work from data streams with only a limited possibility to store past data. The first requirement mostly concerns software architectures and efficient algorithms. The second one also imposes nontrivial theoretical restrictions on the modeling methods: In the data stream model, older data is no longer available to revise earlier suboptimal modeling decisions as the fresh data arrives. In this article, we provide an overview of distributed software architectures and libraries as well as machine learning models for online learning. We highlight the most important ideas for classification, regression, recommendation, and unsupervised modeling from streaming data, and we show how they are implemented in various distributed data stream processing systems. This article is a reference material and not a survey. We do not attempt to be comprehensive in describing all existing methods and solutions; rather, we give pointers to the most important resources in the field. All related sub-fields, online algorithms, online learning, and distributed data processing are hugely dominant in current research and development with conceptually new research results and software components emerging at the time of writing. In this article, we refer to several survey results, both for distributed data processing and for online machine learning. Compared to past surveys, our article is different because we discuss recommender systems in extended detail
    corecore