694 research outputs found

    Gait Data Augmentation using Physics-Based Biomechanical Simulation

    Full text link
    This paper focuses on addressing the problem of data scarcity for gait analysis. Standard augmentation methods may produce gait sequences that are not consistent with the biomechanical constraints of human walking. To address this issue, we propose a novel framework for gait data augmentation by using OpenSIM, a physics-based simulator, to synthesize biomechanically plausible walking sequences. The proposed approach is validated by augmenting the WBDS and CASIA-B datasets and then training gait-based classifiers for 3D gender gait classification and 2D gait person identification respectively. Experimental results indicate that our augmentation approach can improve the performance of model-based gait classifiers and deliver state-of-the-art results for gait-based person identification with an accuracy of up to 96.11% on the CASIA-B dataset.Comment: 30 pages including references, 5 Figures submitted to ESW

    Person recognition based on deep gait: a survey.

    Get PDF
    Gait recognition, also known as walking pattern recognition, has expressed deep interest in the computer vision and biometrics community due to its potential to identify individuals from a distance. It has attracted increasing attention due to its potential applications and non-invasive nature. Since 2014, deep learning approaches have shown promising results in gait recognition by automatically extracting features. However, recognizing gait accurately is challenging due to the covariate factors, complexity and variability of environments, and human body representations. This paper provides a comprehensive overview of the advancements made in this field along with the challenges and limitations associated with deep learning methods. For that, it initially examines the various gait datasets used in the literature review and analyzes the performance of state-of-the-art techniques. After that, a taxonomy of deep learning methods is presented to characterize and organize the research landscape in this field. Furthermore, the taxonomy highlights the basic limitations of deep learning methods in the context of gait recognition. The paper is concluded by focusing on the present challenges and suggesting several research directions to improve the performance of gait recognition in the future

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    VN-GAN: Identity-preserved Variation Normalizing GAN for Gait Recognition

    Full text link
    © 2019 IEEE. Gait is recognized as a unique biometric characteristic to identify a walking person remotely across surveillance networks. However, the performance of gait recognition severely suffers challenges from view angle diversity. To address the problem, an identity-preserved Variation Normalizing Generative Adversarial Network (VN-GAN) is proposed for learning purely identity-related representations. It adopts a coarse-to-fine manner which firstly generates initial coarse images by normalizing view to an identical one and then refines the coarse images by injecting identity-related information. In specific, Siamese structure with discriminators for both camera view angles and human identities is utilized to achieve variation normalization and identity preservation of two stages, respectively. In addition to discriminators, reconstruction loss and identity-preserving loss are integrated, which forces the generated images to be the same in view and to be discriminative in identity. This ensures to generate identity-related images in an identical view of good visual effect for gait recognition. Extensive experiments on benchmark datasets demonstrate that the proposed VN-GAN can generate visually interpretable results and achieve promising performance for gait recognition

    GaitFi: Robust Device-Free Human Identification via WiFi and Vision Multimodal Learning

    Get PDF
    • …
    corecore