405,142 research outputs found

    MRI-based Multi-task Decoupling Learning for Alzheimer's Disease Detection and MMSE Score Prediction: A Multi-site Validation

    Full text link
    Accurately detecting Alzheimer's disease (AD) and predicting mini-mental state examination (MMSE) score are important tasks in elderly health by magnetic resonance imaging (MRI). Most of the previous methods on these two tasks are based on single-task learning and rarely consider the correlation between them. Since the MMSE score, which is an important basis for AD diagnosis, can also reflect the progress of cognitive impairment, some studies have begun to apply multi-task learning methods to these two tasks. However, how to exploit feature correlation remains a challenging problem for these methods. To comprehensively address this challenge, we propose a MRI-based multi-task decoupled learning method for AD detection and MMSE score prediction. First, a multi-task learning network is proposed to implement AD detection and MMSE score prediction, which exploits feature correlation by adding three multi-task interaction layers between the backbones of the two tasks. Each multi-task interaction layer contains two feature decoupling modules and one feature interaction module. Furthermore, to enhance the generalization between tasks of the features selected by the feature decoupling module, we propose the feature consistency loss constrained feature decoupling module. Finally, in order to exploit the specific distribution information of MMSE score in different groups, a distribution loss is proposed to further enhance the model performance. We evaluate our proposed method on multi-site datasets. Experimental results show that our proposed multi-task decoupled representation learning method achieves good performance, outperforming single-task learning and other existing state-of-the-art methods.Comment: 15 page

    Task Indicating Transformer for Task-conditional Dense Predictions

    Full text link
    The task-conditional model is a distinctive stream for efficient multi-task learning. Existing works encounter a critical limitation in learning task-agnostic and task-specific representations, primarily due to shortcomings in global context modeling arising from CNN-based architectures, as well as a deficiency in multi-scale feature interaction within the decoder. In this paper, we introduce a novel task-conditional framework called Task Indicating Transformer (TIT) to tackle this challenge. Our approach designs a Mix Task Adapter module within the transformer block, which incorporates a Task Indicating Matrix through matrix decomposition, thereby enhancing long-range dependency modeling and parameter-efficient feature adaptation by capturing intra- and inter-task features. Moreover, we propose a Task Gate Decoder module that harnesses a Task Indicating Vector and gating mechanism to facilitate adaptive multi-scale feature refinement guided by task embeddings. Experiments on two public multi-task dense prediction benchmarks, NYUD-v2 and PASCAL-Context, demonstrate that our approach surpasses state-of-the-art task-conditional methods.Comment: Accepted by ICASSP 202

    Task-Aware Asynchronous Multi-Task Model with Class Incremental Contrastive Learning for Surgical Scene Understanding

    Full text link
    Purpose: Surgery scene understanding with tool-tissue interaction recognition and automatic report generation can play an important role in intra-operative guidance, decision-making and postoperative analysis in robotic surgery. However, domain shifts between different surgeries with inter and intra-patient variation and novel instruments' appearance degrade the performance of model prediction. Moreover, it requires output from multiple models, which can be computationally expensive and affect real-time performance. Methodology: A multi-task learning (MTL) model is proposed for surgical report generation and tool-tissue interaction prediction that deals with domain shift problems. The model forms of shared feature extractor, mesh-transformer branch for captioning and graph attention branch for tool-tissue interaction prediction. The shared feature extractor employs class incremental contrastive learning (CICL) to tackle intensity shift and novel class appearance in the target domain. We design Laplacian of Gaussian (LoG) based curriculum learning into both shared and task-specific branches to enhance model learning. We incorporate a task-aware asynchronous MTL optimization technique to fine-tune the shared weights and converge both tasks optimally. Results: The proposed MTL model trained using task-aware optimization and fine-tuning techniques reported a balanced performance (BLEU score of 0.4049 for scene captioning and accuracy of 0.3508 for interaction detection) for both tasks on the target domain and performed on-par with single-task models in domain adaptation. Conclusion: The proposed multi-task model was able to adapt to domain shifts, incorporate novel instruments in the target domain, and perform tool-tissue interaction detection and report generation on par with single-task models.Comment: Manuscript accepted in the International Journal of Computer Assisted Radiology and Surgery. codes available: https://github.com/lalithjets/Domain-adaptation-in-MT

    DEPHN: Different Expression Parallel Heterogeneous Network using virtual gradient optimization for Multi-task Learning

    Full text link
    Recommendation system algorithm based on multi-task learning (MTL) is the major method for Internet operators to understand users and predict their behaviors in the multi-behavior scenario of platform. Task correlation is an important consideration of MTL goals, traditional models use shared-bottom models and gating experts to realize shared representation learning and information differentiation. However, The relationship between real-world tasks is often more complex than existing methods do not handle properly sharing information. In this paper, we propose an Different Expression Parallel Heterogeneous Network (DEPHN) to model multiple tasks simultaneously. DEPHN constructs the experts at the bottom of the model by using different feature interaction methods to improve the generalization ability of the shared information flow. In view of the model's differentiating ability for different task information flows, DEPHN uses feature explicit mapping and virtual gradient coefficient for expert gating during the training process, and adaptively adjusts the learning intensity of the gated unit by considering the difference of gating values and task correlation. Extensive experiments on artificial and real-world datasets demonstrate that our proposed method can capture task correlation in complex situations and achieve better performance than baseline models\footnote{Accepted in IJCNN2023}

    Syntax-Informed Interactive Model for Comprehensive Aspect-Based Sentiment Analysis

    Full text link
    Aspect-based sentiment analysis (ABSA), a nuanced task in text analysis, seeks to discern sentiment orientation linked to specific aspect terms in text. Traditional approaches often overlook or inadequately model the explicit syntactic structures of sentences, crucial for effective aspect term identification and sentiment determination. Addressing this gap, we introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA. Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN). We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy. Our extensive experiments on benchmark datasets showcase our model's superiority, significantly surpassing existing methods. Additionally, incorporating BERT as an auxiliary feature extractor further enhances our model's performance

    PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding

    Full text link
    We are now witnessing significant progress of deep learning methods in a variety of tasks (or datasets) of proteins. However, there is a lack of a standard benchmark to evaluate the performance of different methods, which hinders the progress of deep learning in this field. In this paper, we propose such a benchmark called PEER, a comprehensive and multi-task benchmark for Protein sEquence undERstanding. PEER provides a set of diverse protein understanding tasks including protein function prediction, protein localization prediction, protein structure prediction, protein-protein interaction prediction, and protein-ligand interaction prediction. We evaluate different types of sequence-based methods for each task including traditional feature engineering approaches, different sequence encoding methods as well as large-scale pre-trained protein language models. In addition, we also investigate the performance of these methods under the multi-task learning setting. Experimental results show that large-scale pre-trained protein language models achieve the best performance for most individual tasks, and jointly training multiple tasks further boosts the performance. The datasets and source codes of this benchmark are all available at https://github.com/DeepGraphLearning/PEER_BenchmarkComment: Accepted by NeurIPS 2022 Dataset and Benchmark Track. arXiv v2: source code released; arXiv v1: release all benchmark result

    Semantic Segmentation Enhanced Transformer Model for Human Attention Prediction

    Full text link
    Saliency Prediction aims to predict the attention distribution of human eyes given an RGB image. Most of the recent state-of-the-art methods are based on deep image feature representations from traditional CNNs. However, the traditional convolution could not capture the global features of the image well due to its small kernel size. Besides, the high-level factors which closely correlate to human visual perception, e.g., objects, color, light, etc., are not considered. Inspired by these, we propose a Transformer-based method with semantic segmentation as another learning objective. More global cues of the image could be captured by Transformer. In addition, simultaneously learning the object segmentation simulates the human visual perception, which we would verify in our investigation of human gaze control in cognitive science. We build an extra decoder for the subtask and the multiple tasks share the same Transformer encoder, forcing it to learn from multiple feature spaces. We find in practice simply adding the subtask might confuse the main task learning, hence Multi-task Attention Module is proposed to deal with the feature interaction between the multiple learning targets. Our method achieves competitive performance compared to other state-of-the-art methods

    UFIN: Universal Feature Interaction Network for Multi-Domain Click-Through Rate Prediction

    Full text link
    Click-Through Rate (CTR) prediction, which aims to estimate the probability of a user clicking on an item, is a key task in online advertising. Numerous existing CTR models concentrate on modeling the feature interactions within a solitary domain, thereby rendering them inadequate for fulfilling the requisites of multi-domain recommendations in real industrial scenarios. Some recent approaches propose intricate architectures to enhance knowledge sharing and augment model training across multiple domains. However, these approaches encounter difficulties when being transferred to new recommendation domains, owing to their reliance on the modeling of ID features (e.g., item id). To address the above issue, we propose the Universal Feature Interaction Network (UFIN) approach for CTR prediction. UFIN exploits textual data to learn universal feature interactions that can be effectively transferred across diverse domains. For learning universal feature representations, we regard the text and feature as two different modalities and propose an encoder-decoder network founded on a Large Language Model (LLM) to enforce the transfer of data from the text modality to the feature modality. Building upon the above foundation, we further develop a mixtureof-experts (MoE) enhanced adaptive feature interaction model to learn transferable collaborative patterns across multiple domains. Furthermore, we propose a multi-domain knowledge distillation framework to enhance feature interaction learning. Based on the above methods, UFIN can effectively bridge the semantic gap to learn common knowledge across various domains, surpassing the constraints of ID-based models. Extensive experiments conducted on eight datasets show the effectiveness of UFIN, in both multidomain and cross-platform settings. Our code is available at https://github.com/RUCAIBox/UFIN
    corecore