4,802 research outputs found

    Multi-task ensemble creation for advancing performance of image segmentation

    Get PDF
    Image classification is a special type of applied machine learning tasks, where each image can be treated as an instance if there is only one target object that belongs to a specific class and needs to be recognized from an image. In the case of recognizing multiple target objects from an image, the image classification task can be formulated as image segmentation, leading to multiple instances being extracted from an image. In the setting of machine learning, each instance newly extracted from an image belongs to a specific class (a special type of target objects to be recognized) and presents specific features. In this context, in order to achieve effective recognition of each target object, it is crucial to undertake effective selection of features relevant to each specific class and appropriate setting of the training of classifiers on the selected features. In this paper, a multi-task approach of ensemble creation is proposed. The proposed approach is designed to first adopt multiple methods of multi-task feature selection for obtaining multiple groups of feature subsets (i.e., multiple subsets of features selected for each class), then to employ the KNN algorithm to create an ensemble of classifiers using each group of feature subsets resulting from a specific one of the multi-task feature selection methods, and finally all the ensembles are fused to classify each instance. We compare the performance obtained using our proposed way of ensemble creation with the one obtained using a single classifier trained on either a full set of original features or a reduced set of features selected using a single method of feature selection. The experimental results show some advances achieved in the image segmentation performance through using our proposed ensemble creation approaches, in comparison with the use of existing methods

    Advancing ensemble learning performance through data transformation and classifiers fusion in granular computing context

    Get PDF
    Classification is a special type of machine learning tasks, which is essentially achieved by training a classifier that can be used to classify new instances. In order to train a high performance classifier, it is crucial to extract representative features from raw data, such as text and images. In reality, instances could be highly diverse even if they belong to the same class, which indicates different instances of the same class could represent very different characteristics. For example, in a facial expression recognition task, some instances may be better described by Histogram of Oriented Gradients features, while others may be better presented by Local Binary Patterns features. From this point of view, it is necessary to adopt ensemble learning to train different classifiers on different feature sets and to fuse these classifiers towards more accurate classification of each instance. On the other hand, different algorithms are likely to show different suitability for training classifiers on different feature sets. It shows again the necessity to adopt ensemble learning towards advances in the classification performance. Furthermore, a multi-class classification task would become increasingly more complex when the number of classes is increased, i.e. it would lead to the increased difficulty in terms of discriminating different classes. In this paper, we propose an ensemble learning framework that involves transforming a multi-class classification task into a number of binary classification tasks and fusion of classifiers trained on different feature sets by using different learning algorithms. We report experimental studies on a UCI data set on Sonar and the CK+ data set on facial expression recognition. The results show that our proposed ensemble learning approach leads to considerable advances in classification performance, in comparison with popular learning approaches including decision tree ensembles and deep neural networks. In practice, the proposed approach can be used effectively to build an ensemble of ensembles acting as a group of expert systems, which show the capability to achieve more stable performance of pattern recognition, in comparison with building a single classifier that acts as a single expert system

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    Deep Models for Brain EM Image Segmentation: Novel Insights and improved Performance

    Get PDF
    Motivation: Accurate segmentation of brain electron microscopy (EM) images is a critical step in dense circuit reconstruction. Although deep neural networks (DNNs) have been widely used in a number of applications in computer vision, most of these models that proved to be effective on image classification tasks cannot be applied directly to EM image segmentation, due to the different objectives of these tasks. As a result, it is desirable to develop an optimized architecture that uses the full power of DNNs and tailored specifically for EM image segmentation. Results: In this work, we proposed a novel design of DNNs for this task. We trained a pixel classifier that operates on raw pixel intensities with no preprocessing to generate probability values for each pixel being a membrane or not. Although the use of neural networks in image segmentation is not completely new, we developed novel insights and model architectures that allow us to achieve superior performance on EM image segmentation tasks. Our submission based on these insights to the 2D EM Image Segmentation Challenge achieved the best performance consistently across all the three evaluation metrics. This challenge is still ongoing and the results in this paper are as of June 5, 2015

    An In-Depth Statistical Review of Retinal Image Processing Models from a Clinical Perspective

    Get PDF
    The burgeoning field of retinal image processing is critical in facilitating early diagnosis and treatment of retinal diseases, which are amongst the leading causes of vision impairment globally. Despite rapid advancements, existing machine learning models for retinal image processing are characterized by significant limitations, including disparities in pre-processing, segmentation, and classification methodologies, as well as inconsistencies in post-processing operations. These limitations hinder the realization of accurate, reliable, and clinically relevant outcomes. This paper provides an in-depth statistical review of extant machine learning models used in retinal image processing, meticulously comparing them based on their internal operating characteristics and performance levels. By adopting a robust analytical approach, our review delineates the strengths and weaknesses of current models, offering comprehensive insights that are instrumental in guiding future research and development in this domain. Furthermore, this review underscores the potential clinical impacts of these models, highlighting their pivotal role in enhancing diagnostic accuracy, prognostic assessments, and therapeutic interventions for retinal disorders. In conclusion, our work not only bridges the existing knowledge gap in the literature but also paves the way for the evolution of more sophisticated and clinically-aligned retinal image processing models, ultimately contributing to improved patient outcomes and advancements in ophthalmic care

    Comparative Analysis of Deep Learning Architectures for Breast Cancer Diagnosis Using the BreaKHis Dataset

    Full text link
    Cancer is an extremely difficult and dangerous health problem because it manifests in so many different ways and affects so many different organs and tissues. The primary goal of this research was to evaluate deep learning models' ability to correctly identify breast cancer cases using the BreakHis dataset. The BreakHis dataset covers a wide range of breast cancer subtypes through its huge collection of histopathological pictures. In this study, we use and compare the performance of five well-known deep learning models for cancer classification: VGG, ResNet, Xception, Inception, and InceptionResNet. The results placed the Xception model at the top, with an F1 score of 0.9 and an accuracy of 89%. At the same time, the Inception and InceptionResNet models both hit accuracy of 87% . However, the F1 score for the Inception model was 87, while that for the InceptionResNet model was 86. These results demonstrate the importance of deep learning methods in making correct breast cancer diagnoses. This highlights the potential to provide improved diagnostic services to patients. The findings of this study not only improve current methods of cancer diagnosis, but also make significant contributions to the creation of new and improved cancer treatment strategies. In a nutshell, the results of this study represent a major advancement in the direction of achieving these vital healthcare goals.Comment: 7 pages, 1 figure, 2 table

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201
    corecore