2 research outputs found

    Adversarial Attack and Defense Strategies for Deep Speaker Recognition Systems

    Full text link
    Robust speaker recognition, including in the presence of malicious attacks, is becoming increasingly important and essential, especially due to the proliferation of several smart speakers and personal agents that interact with an individual's voice commands to perform diverse, and even sensitive tasks. Adversarial attack is a recently revived domain which is shown to be effective in breaking deep neural network-based classifiers, specifically, by forcing them to change their posterior distribution by only perturbing the input samples by a very small amount. Although, significant progress in this realm has been made in the computer vision domain, advances within speaker recognition is still limited. The present expository paper considers several state-of-the-art adversarial attacks to a deep speaker recognition system, employing strong defense methods as countermeasures, and reporting on several ablation studies to obtain a comprehensive understanding of the problem. The experiments show that the speaker recognition systems are vulnerable to adversarial attacks, and the strongest attacks can reduce the accuracy of the system from 94% to even 0%. The study also compares the performances of the employed defense methods in detail, and finds adversarial training based on Projected Gradient Descent (PGD) to be the best defense method in our setting. We hope that the experiments presented in this paper provide baselines that can be useful for the research community interested in further studying adversarial robustness of speaker recognition systems

    Speaker Recognition Based on Deep Learning: An Overview

    Full text link
    Speaker recognition is a task of identifying persons from their voices. Recently, deep learning has dramatically revolutionized speaker recognition. However, there is lack of comprehensive reviews on the exciting progress. In this paper, we review several major subtasks of speaker recognition, including speaker verification, identification, diarization, and robust speaker recognition, with a focus on deep-learning-based methods. Because the major advantage of deep learning over conventional methods is its representation ability, which is able to produce highly abstract embedding features from utterances, we first pay close attention to deep-learning-based speaker feature extraction, including the inputs, network structures, temporal pooling strategies, and objective functions respectively, which are the fundamental components of many speaker recognition subtasks. Then, we make an overview of speaker diarization, with an emphasis of recent supervised, end-to-end, and online diarization. Finally, we survey robust speaker recognition from the perspectives of domain adaptation and speech enhancement, which are two major approaches of dealing with domain mismatch and noise problems. Popular and recently released corpora are listed at the end of the paper
    corecore