17,245 research outputs found

    Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels

    Full text link
    Graph Convolutional Networks(GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised(M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.Comment: AAAI Conference on Artificial Intelligence (AAAI 2020

    Transitive Invariance for Self-supervised Visual Representation Learning

    Full text link
    Learning visual representations with self-supervised learning has become popular in computer vision. The idea is to design auxiliary tasks where labels are free to obtain. Most of these tasks end up providing data to learn specific kinds of invariance useful for recognition. In this paper, we propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance variations (viewpoint, pose, deformations, illumination, etc). Instead of combining two approaches with multi-task learning, we argue to organize and reason the data with multiple variations. Specifically, we propose to generate a graph with millions of objects mined from hundreds of thousands of videos. The objects are connected by two types of edges which correspond to two types of invariance: "different instances but a similar viewpoint and category" and "different viewpoints of the same instance". By applying simple transitivity on the graph with these edges, we can obtain pairs of images exhibiting richer visual invariance. We use this data to train a Triplet-Siamese network with VGG16 as the base architecture and apply the learned representations to different recognition tasks. For object detection, we achieve 63.2% mAP on PASCAL VOC 2007 using Fast R-CNN (compare to 67.3% with ImageNet pre-training). For the challenging COCO dataset, our method is surprisingly close (23.5%) to the ImageNet-supervised counterpart (24.4%) using the Faster R-CNN framework. We also show that our network can perform significantly better than the ImageNet network in the surface normal estimation task.Comment: ICCV 201

    RetinaFace: Single-stage Dense Face Localisation in the Wild

    Full text link
    Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning. Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a self-supervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set, RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their results in face verification (TAR=89.59% for FAR=1e-6). (5) By employing light-weight backbone networks, RetinaFace can run real-time on a single CPU core for a VGA-resolution image. Extra annotations and code have been made available at: https://github.com/deepinsight/insightface/tree/master/RetinaFace

    Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning

    Full text link
    Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especially when the unlabeled node is far from labeled ones. To capitalize on the information from unlabeled nodes to boost the training for GCN, we propose a novel framework named Self-Ensembling GCN (SEGCN), which marries GCN with Mean Teacher - another powerful model in semi-supervised learning. SEGCN contains a student model and a teacher model. As a student, it not only learns to correctly classify the labeled nodes, but also tries to be consistent with the teacher on unlabeled nodes in more challenging situations, such as a high dropout rate and graph collapse. As a teacher, it averages the student model weights and generates more accurate predictions to lead the student. In such a mutual-promoting process, both labeled and unlabeled samples can be fully utilized for backpropagating effective gradients to train GCN. In three article classification tasks, i.e. Citeseer, Cora and Pubmed, we validate that the proposed method matches the state of the arts in the classification accuracy.Comment: 9 pages, 4 figure

    Neural Graph Machines: Learning Neural Networks Using Graphs

    Full text link
    Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely "Neural Graph Machines", that can combine the power of neural networks and label propagation. This work generalises previous literature on graph-augmented training of neural networks, enabling it to be applied to multiple neural architectures (Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of graphs. The new objective allows the neural networks to harness both labeled and unlabeled data by: (a) allowing the network to train using labeled data as in the supervised setting, (b) biasing the network to learn similar hidden representations for neighboring nodes on a graph, in the same vein as label propagation. Such architectures with the proposed objective can be trained efficiently using stochastic gradient descent and scaled to large graphs, with a runtime that is linear in the number of edges. The proposed joint training approach convincingly outperforms many existing methods on a wide range of tasks (multi-label classification on social graphs, news categorization, document classification and semantic intent classification), with multiple forms of graph inputs (including graphs with and without node-level features) and using different types of neural networks.Comment: 9 page

    Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

    Full text link
    Deep convolutional networks for semantic image segmentation typically require large-scale labeled data, e.g. ImageNet and MS COCO, for network pre-training. To reduce annotation efforts, self-supervised semantic segmentation is recently proposed to pre-train a network without any human-provided labels. The key of this new form of learning is to design a proxy task (e.g. image colorization), from which a discriminative loss can be formulated on unlabeled data. Many proxy tasks, however, lack the critical supervision signals that could induce discriminative representation for the target image segmentation task. Thus self-supervision's performance is still far from that of supervised pre-training. In this study, we overcome this limitation by incorporating a "mix-and-match" (M&M) tuning stage in the self-supervision pipeline. The proposed approach is readily pluggable to many self-supervision methods and does not use more annotated samples than the original process. Yet, it is capable of boosting the performance of target image segmentation task to surpass fully-supervised pre-trained counterpart. The improvement is made possible by better harnessing the limited pixel-wise annotations in the target dataset. Specifically, we first introduce the "mix" stage, which sparsely samples and mixes patches from the target set to reflect rich and diverse local patch statistics of target images. A "match" stage then forms a class-wise connected graph, which can be used to derive a strong triplet-based discriminative loss for fine-tuning the network. Our paradigm follows the standard practice in existing self-supervised studies and no extra data or label is required. With the proposed M&M approach, for the first time, a self-supervision method can achieve comparable or even better performance compared to its ImageNet pre-trained counterpart on both PASCAL VOC2012 dataset and CityScapes dataset.Comment: To appear in AAAI 2018 as a spotlight paper. More details at the project page: http://mmlab.ie.cuhk.edu.hk/projects/M%26M

    Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization

    Full text link
    Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning

    Deep graph learning for semi-supervised classification

    Full text link
    Graph learning (GL) can dynamically capture the distribution structure (graph structure) of data based on graph convolutional networks (GCN), and the learning quality of the graph structure directly influences GCN for semi-supervised classification. Existing methods mostly combine the computational layer and the related losses into GCN for exploring the global graph(measuring graph structure from all data samples) or local graph (measuring graph structure from local data samples). Global graph emphasises on the whole structure description of the inter-class data, while local graph trend to the neighborhood structure representation of intra-class data. However, it is difficult to simultaneously balance these graphs of the learning process for semi-supervised classification because of the interdependence of these graphs. To simulate the interdependence, deep graph learning(DGL) is proposed to find the better graph representation for semi-supervised classification. DGL can not only learn the global structure by the previous layer metric computation updating, but also mine the local structure by next layer local weight reassignment. Furthermore, DGL can fuse the different structures by dynamically encoding the interdependence of these structures, and deeply mine the relationship of the different structures by the hierarchical progressive learning for improving the performance of semi-supervised classification. Experiments demonstrate the DGL outperforms state-of-the-art methods on three benchmark datasets (Citeseer,Cora, and Pubmed) for citation networks and two benchmark datasets (MNIST and Cifar10) for images

    Deep Convolutional Networks on Graph-Structured Data

    Full text link
    Deep Learning's recent successes have mostly relied on Convolutional Networks, which exploit fundamental statistical properties of images, sounds and video data: the local stationarity and multi-scale compositional structure, that allows expressing long range interactions in terms of shorter, localized interactions. However, there exist other important examples, such as text documents or bioinformatic data, that may lack some or all of these strong statistical regularities. In this paper we consider the general question of how to construct deep architectures with small learning complexity on general non-Euclidean domains, which are typically unknown and need to be estimated from the data. In particular, we develop an extension of Spectral Networks which incorporates a Graph Estimation procedure, that we test on large-scale classification problems, matching or improving over Dropout Networks with far less parameters to estimate

    Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

    Full text link
    This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information, and the resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised manner to avoid online weakly supervised learning and exploit them not only to extract high-level features but also to produce both intra- and inter-image saliency maps. Through a refinement step, the initial co-saliency maps can uniformly highlight co-salient regions and locate accurate object boundaries. To handle input image groups inconsistent in size, we propose to pool multi-regional descriptors including both within-segment and within-group information. In addition, the integrated multilayer graph is constructed to find the regions that the previous steps may not detect by seed propagation with low-level descriptors. In this work, we utilize the useful complementary components of high-, low-level information, and several learning-based steps. Our experiments have demonstrated that the proposed approach outperforms comparable co-saliency detection methods on widely used public databases and can also be directly applied to co-segmentation tasks.Comment: 13 pages, 10 figures, 3 table
    corecore