3,812 research outputs found

    Can you tell a face from a HEVC bitstream?

    Full text link
    Image and video analytics are being increasingly used on a massive scale. Not only is the amount of data growing, but the complexity of the data processing pipelines is also increasing, thereby exacerbating the problem. It is becoming increasingly important to save computational resources wherever possible. We focus on one of the poster problems of visual analytics -- face detection -- and approach the issue of reducing the computation by asking: Is it possible to detect a face without full image reconstruction from the High Efficiency Video Coding (HEVC) bitstream? We demonstrate that this is indeed possible, with accuracy comparable to conventional face detection, by training a Convolutional Neural Network on the output of the HEVC entropy decoder

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

    Full text link
    Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually
    • …
    corecore