44,523 research outputs found

    Multi-Scale Dense Networks for Resource Efficient Image Classification

    Full text link
    In this paper we investigate image classification with computational resource limits at test time. Two such settings are: 1. anytime classification, where the network's prediction for a test example is progressively updated, facilitating the output of a prediction at any time; and 2. budgeted batch classification, where a fixed amount of computation is available to classify a set of examples that can be spent unevenly across "easier" and "harder" inputs. In contrast to most prior work, such as the popular Viola and Jones algorithm, our approach is based on convolutional neural networks. We train multiple classifiers with varying resource demands, which we adaptively apply during test time. To maximally re-use computation between the classifiers, we incorporate them as early-exits into a single deep convolutional neural network and inter-connect them with dense connectivity. To facilitate high quality classification early on, we use a two-dimensional multi-scale network architecture that maintains coarse and fine level features all-throughout the network. Experiments on three image-classification tasks demonstrate that our framework substantially improves the existing state-of-the-art in both settings

    Resolution Adaptive Networks for Efficient Inference

    Full text link
    Adaptive inference is an effective mechanism to achieve a dynamic tradeoff between accuracy and computational cost in deep networks. Existing works mainly exploit architecture redundancy in network depth or width. In this paper, we focus on spatial redundancy of input samples and propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs containing large objects with prototypical features, while only some "hard" samples need spatially detailed information. In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations, and those samples with high prediction confidence will exit early from the network without being further processed. Meanwhile, high-resolution paths in the network maintain the capability to recognize the "hard" samples. Therefore, RANet can effectively reduce the spatial redundancy involved in inferring high-resolution inputs. Empirically, we demonstrate the effectiveness of the proposed RANet on the CIFAR-10, CIFAR-100 and ImageNet datasets in both the anytime prediction setting and the budgeted batch classification setting.Comment: CVPR 202

    DSOD: Learning Deeply Supervised Object Detectors from Scratch

    Full text link
    We present Deeply Supervised Object Detector (DSOD), a framework that can learn object detectors from scratch. State-of-the-art object objectors rely heavily on the off-the-shelf networks pre-trained on large-scale classification datasets like ImageNet, which incurs learning bias due to the difference on both the loss functions and the category distributions between classification and detection tasks. Model fine-tuning for the detection task could alleviate this bias to some extent but not fundamentally. Besides, transferring pre-trained models from classification to detection between discrepant domains is even more difficult (e.g. RGB to depth images). A better solution to tackle these two critical problems is to train object detectors from scratch, which motivates our proposed DSOD. Previous efforts in this direction mostly failed due to much more complicated loss functions and limited training data in object detection. In DSOD, we contribute a set of design principles for training object detectors from scratch. One of the key findings is that deep supervision, enabled by dense layer-wise connections, plays a critical role in learning a good detector. Combining with several other principles, we develop DSOD following the single-shot detection (SSD) framework. Experiments on PASCAL VOC 2007, 2012 and MS COCO datasets demonstrate that DSOD can achieve better results than the state-of-the-art solutions with much more compact models. For instance, DSOD outperforms SSD on all three benchmarks with real-time detection speed, while requires only 1/2 parameters to SSD and 1/10 parameters to Faster RCNN. Our code and models are available at: https://github.com/szq0214/DSOD .Comment: ICCV 2017. Code and models are available at: https://github.com/szq0214/DSO

    Seesaw-Net: Convolution Neural Network With Uneven Group Convolution

    Full text link
    In this paper, we are interested in boosting the representation capability of convolution neural networks which utilizing the inverted residual structure. Based on the success of Inverted Residual structure[Sandler et al. 2018] and Interleaved Low-Rank Group Convolutions[Sun et al. 2018], we rethink this two pattern of neural network structure, rather than NAS(Neural architecture search) method[Zoph and Le 2017; Pham et al. 2018; Liu et al. 2018b], we introduce uneven point-wise group convolution, which provide a novel search space for designing basic blocks to obtain better trade-off between representation capability and computational cost. Meanwhile, we propose two novel information flow patterns that will enable cross-group information flow for multiple group convolution layers with and without any channel permute/shuffle operation. Dense experiments on image classification task show that our proposed model, named Seesaw-Net, achieves state-of-the-art(SOTA) performance with limited computation and memory cost. Our code will be open-source and available together with pre-trained models

    Model Slicing for Supporting Complex Analytics with Elastic Inference Cost and Resource Constraints

    Full text link
    Deep learning models have been used to support analytics beyond simple aggregation, where deeper and wider models have been shown to yield great results. These models consume a huge amount of memory and computational operations. However, most of the large-scale industrial applications are often computational budget constrained. In practice, the peak workload of inference service could be 10x higher than the average cases, with the presence of unpredictable extreme cases. Lots of computational resources could be wasted during off-peak hours and the system may crash when the workload exceeds system capacity. How to support deep learning services with dynamic workload cost-efficiently remains a challenging problem. In this paper, we address the challenge with a general and novel training scheme called model slicing, which enables deep learning models to provide predictions within the prescribed computational resource budget dynamically. Model slicing could be viewed as an elastic computation solution without requiring more computational resources. Succinctly, each layer in the model is divided into groups of contiguous block of basic components (i.e. neurons in dense layers and channels in convolutional layers), and then partially ordered relation is introduced to these groups by enforcing that groups participated in each forward pass always starts from the first group to the dynamically-determined rightmost group. Trained by dynamically indexing the rightmost group with a single parameter slice rate, the network is engendered to build up group-wise and residual representation. Then during inference, a sub-model with fewer groups can be readily deployed for efficiency whose computation is roughly quadratic to the width controlled by the slice rate. Extensive experiments show that models trained with model slicing can effectively support on-demand workload with elastic inference cost.Comment: 14 pages, 8 figures. arXiv admin note: text overlap with arXiv:1706.02093 by other author

    Object Detection from Scratch with Deep Supervision

    Full text link
    We propose Deeply Supervised Object Detectors (DSOD), an object detection framework that can be trained from scratch. Recent advances in object detection heavily depend on the off-the-shelf models pre-trained on large-scale classification datasets like ImageNet and OpenImage. However, one problem is that adopting pre-trained models from classification to detection task may incur learning bias due to the different objective function and diverse distributions of object categories. Techniques like fine-tuning on detection task could alleviate this issue to some extent but are still not fundamental. Furthermore, transferring these pre-trained models across discrepant domains will be more difficult (e.g., from RGB to depth images). Thus, a better solution to handle these critical problems is to train object detectors from scratch, which motivates our proposed method. Previous efforts on this direction mainly failed by reasons of the limited training data and naive backbone network structures for object detection. In DSOD, we contribute a set of design principles for learning object detectors from scratch. One of the key principles is the deep supervision, enabled by layer-wise dense connections in both backbone networks and prediction layers, plays a critical role in learning good detectors from scratch. After involving several other principles, we build our DSOD based on the single-shot detection framework (SSD). We evaluate our method on PASCAL VOC 2007, 2012 and COCO datasets. DSOD achieves consistently better results than the state-of-the-art methods with much more compact models. Specifically, DSOD outperforms baseline method SSD on all three benchmarks, while requiring only 1/2 parameters. We also observe that DSOD can achieve comparable/slightly better results than Mask RCNN + FPN (under similar input size) with only 1/3 parameters, using no extra data or pre-trained models.Comment: More results and analysis in this version. This is an extension of our previous conference paper: arXiv:1708.0124

    Training CNNs with Selective Allocation of Channels

    Full text link
    Recent progress in deep convolutional neural networks (CNNs) have enabled a simple paradigm of architecture design: larger models typically achieve better accuracy. Due to this, in modern CNN architectures, it becomes more important to design models that generalize well under certain resource constraints, e.g. the number of parameters. In this paper, we propose a simple way to improve the capacity of any CNN model having large-scale features, without adding more parameters. In particular, we modify a standard convolutional layer to have a new functionality of channel-selectivity, so that the layer is trained to select important channels to re-distribute their parameters. Our experimental results under various CNN architectures and datasets demonstrate that the proposed new convolutional layer allows new optima that generalize better via efficient resource utilization, compared to the baseline.Comment: 15 pages; Accepted to ICML 201

    Sample Dropout for Audio Scene Classification Using Multi-Scale Dense Connected Convolutional Neural Network

    Full text link
    Acoustic scene classification is an intricate problem for a machine. As an emerging field of research, deep Convolutional Neural Networks (CNN) achieve convincing results. In this paper, we explore the use of multi-scale Dense connected convolutional neural network (DenseNet) for the classification task, with the goal to improve the classification performance as multi-scale features can be extracted from the time-frequency representation of the audio signal. On the other hand, most of previous CNN-based audio scene classification approaches aim to improve the classification accuracy, by employing different regularization techniques, such as the dropout of hidden units and data augmentation, to reduce overfitting. It is widely known that outliers in the training set have a high negative influence on the trained model, and culling the outliers may improve the classification performance, while it is often under-explored in previous studies. In this paper, inspired by the silence removal in the speech signal processing, a novel sample dropout approach is proposed, which aims to remove outliers in the training dataset. Using the DCASE 2017 audio scene classification datasets, the experimental results demonstrates the proposed multi-scale DenseNet providing a superior performance than the traditional single-scale DenseNet, while the sample dropout method can further improve the classification robustness of multi-scale DenseNet.Comment: Accepted to 2018 Pacific Rim Knowledge Acquisition Workshop (PKAW

    NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

    Full text link
    Current state-of-the-art convolutional architectures for object detection are manually designed. Here we aim to learn a better architecture of feature pyramid network for object detection. We adopt Neural Architecture Search and discover a new feature pyramid architecture in a novel scalable search space covering all cross-scale connections. The discovered architecture, named NAS-FPN, consists of a combination of top-down and bottom-up connections to fuse features across scales. NAS-FPN, combined with various backbone models in the RetinaNet framework, achieves better accuracy and latency tradeoff compared to state-of-the-art object detection models. NAS-FPN improves mobile detection accuracy by 2 AP compared to state-of-the-art SSDLite with MobileNetV2 model in [32] and achieves 48.3 AP which surpasses Mask R-CNN [10] detection accuracy with less computation time.Comment: Accepted at CVPR 201

    Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

    Full text link
    Object detection has made great progress in the past few years along with the development of deep learning. However, most current object detection methods are resource hungry, which hinders their wide deployment to many resource restricted usages such as usages on always-on devices, battery-powered low-end devices, etc. This paper considers the resource and accuracy trade-off for resource-restricted usages during designing the whole object detection framework. Based on the deeply supervised object detection (DSOD) framework, we propose Tiny-DSOD dedicating to resource-restricted usages. Tiny-DSOD introduces two innovative and ultra-efficient architecture blocks: depthwise dense block (DDB) based backbone and depthwise feature-pyramid-network (D-FPN) based front-end. We conduct extensive experiments on three famous benchmarks (PASCAL VOC 2007, KITTI, and COCO), and compare Tiny-DSOD to the state-of-the-art ultra-efficient object detection solutions such as Tiny-YOLO, MobileNet-SSD (v1 & v2), SqueezeDet, Pelee, etc. Results show that Tiny-DSOD outperforms these solutions in all the three metrics (parameter-size, FLOPs, accuracy) in each comparison. For instance, Tiny-DSOD achieves 72.1% mAP with only 0.95M parameters and 1.06B FLOPs, which is by far the state-of-the-arts result with such a low resource requirement.Comment: 12 pages, 3 figures, accepted by BMVC 201
    corecore