2,016 research outputs found

    Development and user evaluation of an immersive light field system for space exploration

    Get PDF
    This paper presents the developmental work and user evaluation results of an immersive light field system built for the European Space Agency’s (ESA) project called “Light field-enhanced immersive teleoperation system for space station and ground control.” The main aim of the project is to evaluate the usefulness and feasibility of light fields in space exploration, and compare it to other types of immersive content, such as 360° photos and point clouds. In the course of the project, light field data were captured with a robotically controlled camera and processed into a suitable format. The light field authoring process was performed, and a light field renderer capable of displaying immersive panoramic or planar light fields on modern virtual reality hardware was developed. The planetary surface points of interest (POIs) were modeled in the laboratory environment, and three distinct test use cases utilizing them were developed. The user evaluation was held in the European Astronaut Centre (EAC) in the summer of 2023, involving prospective end-users of various backgrounds. During the evaluation, questionnaires, interviews, and observation were used for data collection. At the end of the paper, the evaluation results, as well as a discussion about lessons learned and possible improvements to the light field system, are presented

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    MAP3D: An explorative approach for automatic mapping of real-world eye-tracking data on a virtual 3D model

    Get PDF
    Mobile eye tracking helps to investigate real-world settings, in which participants can move freely. This enhances the studies’ ecological validity but poses challenges for the analysis. Often, the 3D stimulus is reduced to a 2D image (reference view) and the fixations are manually mapped to this 2D image. This leads to a loss of information about the three-dimensionality of the stimulus. Using several reference images, from different perspectives, poses new problems, in particular concerning the mapping of fixations in the transition areas between two reference views. A newly developed approach (MAP3D) is presented that enables generating a 3D model and automatic mapping of fixations to this virtual 3D model of the stimulus. This avoids problems with the reduction to a 2D reference image and with transitions between images. The x, y and z coordinates of the fixations are available as a point cloud and as .csv output. First exploratory application and evaluation tests are promising: MAP3D offers innovative ways of post-hoc mapping fixation data on 3D stimuli with open-source software and thus provides cost-efficient new avenues for research

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Computational and experimental studies of selected magnesium and ferrous sulfate hydrates: implications for the characterisation of extreme and extraterrestrial environments

    Get PDF
    Magnesium sulfate hydrates are considered important rock-forming minerals on the outer three Galilean moons of Jupiter (i.e., Europa, Ganymede, Callisto) and, alongside ferrous sulfate hydrates, are promising candidate minerals for the widespread sulfate deposits that occur in the equatorial region of Mars. In such extraterrestrial environments, these minerals experience extreme high-pressure conditions in the interiour of the Galilean moons and low temperature conditions on the surface of these moons and Mars. The aim of this thesis is to understand the structural stability, compressibility, and thermal expansion of these compounds in such extreme environments and aid their identification in ongoing and future space missions. Most magnesium sulfate hydrates lack accurate reference elastic tensors, which hinders their seismological identification in lander missions on the icy moons of the outer solar system, as envisioned for the near future. In this thesis, the accuracy of recent advancements in density functional theory to predict the compressibility and elastic constants of icy satellite candidate minerals (i.e., epsomite (MgSO₄·7H₂O), gypsum (CaSO₄·2H₂O), carbon dioxide (CO₂), and benzene (C₆H₆)) was assessed by benchmarking them against experimental reference data from the literature. Key findings are that density functional theory calculations do not yield elastic constants accurate enough to be used as a reference for the seismic exploration of icy moons. However, the bulk compressibility of such materials is very accurately reproduced by density functional theory, which was therefore used to predict the compressibility of the icy satellite candidate minerals starkeyite (MgSO₄·4H₂O) and cranswickite (MgSO₄·4H₂O). Knowledge of the compressibility of such minerals is critical to model mantle processes (e.g., salt diaprisim, plate tectonics, subduction) and the density structure of the outer three Galilean moons. The thermal expansion and structural stability of three sulfate minerals (i.e., rozenite (FeSO₄·4H₂O), starkeyite, and cranswickite) was characterised for the first time using neutron diffraction. Cranswickite transforms to starkeyite at 330 K, well above the maximum surface temperature of 308 K hitherto reported on Mars. Starkeyite likely undergoes a structural phase transition at around 245 K. The structure of this proposed low-temperature polymorph could not be determined but would be of great interest since the temperature drops below 245 K on equatorial Mars at night-time. Starkeyite was also studied by means of synchrotron X-ray diffraction but suffered radiation damage. No phase transition was observed in rozenite from 290 – 21 K, which contrasts with Raman data reported in the literature, where sharpening of vibrational modes upon cooling was misinterpreted as mode splitting and evidence for two phase transitions at temperatures relevant to the Martian surface. First-principles phonon frequency calculations provide evidence supporting the absence of vibrational mode splitting. A workflow to obtain reliable reference Raman spectra for space exploration was proposed and an optical centre stick for the simultaneous acquisition of neutron diffraction and Raman spectroscopy data at the HRPD instrument was commissioned. Lastly, the structure of a polymorph of hexahydrite (MgSO₄·6H₂O), most recently proposed in the literature, was shown to be unambiguously wrong

    University of Windsor Graduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1027/thumbnail.jp
    corecore