18,536 research outputs found

    Weighted Bilinear Coding over Salient Body Parts for Person Re-identification

    Full text link
    Deep convolutional neural networks (CNNs) have demonstrated dominant performance in person re-identification (Re-ID). Existing CNN based methods utilize global average pooling (GAP) to aggregate intermediate convolutional features for Re-ID. However, this strategy only considers the first-order statistics of local features and treats local features at different locations equally important, leading to sub-optimal feature representation. To deal with these issues, we propose a novel weighted bilinear coding (WBC) framework for local feature aggregation in CNN networks to pursue more representative and discriminative feature representations, which can adapt to other state-of-the-art methods and improve their performance. In specific, bilinear coding is used to encode the channel-wise feature correlations to capture richer feature interactions. Meanwhile, a weighting scheme is applied on the bilinear coding to adaptively adjust the weights of local features at different locations based on their importance in recognition, further improving the discriminability of feature aggregation. To handle the spatial misalignment issue, we use a salient part net (spatial attention module) to derive salient body parts, and apply the WBC model on each part. The final representation, formed by concatenating the WBC encoded features of each part, is both discriminative and resistant to spatial misalignment. Experiments on three benchmarks including Market-1501, DukeMTMC-reID and CUHK03 evidence the favorable performance of our method against other outstanding methods.Comment: 22 page

    Playing hard exploration games by watching YouTube

    Full text link
    Deep reinforcement learning methods traditionally struggle with tasks where environment rewards are particularly sparse. One successful method of guiding exploration in these domains is to imitate trajectories provided by a human demonstrator. However, these demonstrations are typically collected under artificial conditions, i.e. with access to the agent's exact environment setup and the demonstrator's action and reward trajectories. Here we propose a two-stage method that overcomes these limitations by relying on noisy, unaligned footage without access to such data. First, we learn to map unaligned videos from multiple sources to a common representation using self-supervised objectives constructed over both time and modality (i.e. vision and sound). Second, we embed a single YouTube video in this representation to construct a reward function that encourages an agent to imitate human gameplay. This method of one-shot imitation allows our agent to convincingly exceed human-level performance on the infamously hard exploration games Montezuma's Revenge, Pitfall! and Private Eye for the first time, even if the agent is not presented with any environment rewards

    Facial Landmark Machines: A Backbone-Branches Architecture with Progressive Representation Learning

    Full text link
    Facial landmark localization plays a critical role in face recognition and analysis. In this paper, we propose a novel cascaded backbone-branches fully convolutional neural network~(BB-FCN) for rapidly and accurately localizing facial landmarks in unconstrained and cluttered settings. Our proposed BB-FCN generates facial landmark response maps directly from raw images without any preprocessing. BB-FCN follows a coarse-to-fine cascaded pipeline, which consists of a backbone network for roughly detecting the locations of all facial landmarks and one branch network for each type of detected landmark for further refining their locations. Furthermore, to facilitate the facial landmark localization under unconstrained settings, we propose a large-scale benchmark named SYSU16K, which contains 16000 faces with large variations in pose, expression, illumination and resolution. Extensive experimental evaluations demonstrate that our proposed BB-FCN can significantly outperform the state-of-the-art under both constrained (i.e., within detected facial regions only) and unconstrained settings. We further confirm that high-quality facial landmarks localized with our proposed network can also improve the precision and recall of face detection

    Rainfall Advection using Velocimetry by Multiresolution Viscous Alignment

    Get PDF
    An algorithm to estimate motion from satellite imagery is presented. Dense displacement fields are computed from time-separated images of of significant convective activity using a Bayesian formulation of the motion estimation problem. Ordinarily this motion estimation problem is ill-posed; there are far too many degrees of freedom than necessary to represent the motion. Therefore, some form of regularization becomes necessary and by imposing smoothness and non-divergence as desirable properties of the estimated displacement vector field, excellent solutions are obtained. Our approach provides a marked improvement over other methods in conventional use. In contrast to correlation based approaches, the displacement fields produced by our method are dense, spatial consistency of the displacement vector field is implicit, and higher-order and small-scale deformations can be easily handled. In contrast with optic-flow algorithms, we can produce solutions at large separations of mesoscale features between large time-steps or where the deformation is rapidly evolving

    What is a salient object? A dataset and a baseline model for salient object detection

    Full text link
    Salient object detection or salient region detection models, diverging from fixation prediction models, have traditionally been dealing with locating and segmenting the most salient object or region in a scene. While the notion of most salient object is sensible when multiple objects exist in a scene, current datasets for evaluation of saliency detection approaches often have scenes with only one single object. We introduce three main contributions in this paper: First, we take an indepth look at the problem of salient object detection by studying the relationship between where people look in scenes and what they choose as the most salient object when they are explicitly asked. Based on the agreement between fixations and saliency judgments, we then suggest that the most salient object is the one that attracts the highest fraction of fixations. Second, we provide two new less biased benchmark datasets containing scenes with multiple objects that challenge existing saliency models. Indeed, we observed a severe drop in performance of 8 state-of-the-art models on our datasets (40% to 70%). Third, we propose a very simple yet powerful model based on superpixels to be used as a baseline for model evaluation and comparison. While on par with the best models on MSRA-5K dataset, our model wins over other models on our data highlighting a serious drawback of existing models, which is convoluting the processes of locating the most salient object and its segmentation. We also provide a review and statistical analysis of some labeled scene datasets that can be used for evaluating salient object detection models. We believe that our work can greatly help remedy the over-fitting of models to existing biased datasets and opens new venues for future research in this fast-evolving field.Comment: IEEE Transactions on Image Processing, 201

    Nasal Patches and Curves for Expression-robust 3D Face Recognition

    Full text link
    The potential of the nasal region for expression robust 3D face recognition is thoroughly investigated by a novel five-step algorithm. First, the nose tip location is coarsely detected and the face is segmented, aligned and the nasal region cropped. Then, a very accurate and consistent nasal landmarking algorithm detects seven keypoints on the nasal region. In the third step, a feature extraction algorithm based on the surface normals of Gabor-wavelet filtered depth maps is utilised and, then, a set of spherical patches and curves are localised over the nasal region to provide the feature descriptors. The last step applies a genetic algorithm-based feature selector to detect the most stable patches and curves over different facial expressions. The algorithm provides the highest reported nasal region-based recognition ranks on the FRGC, Bosphorus and BU-3DFE datasets. The results are comparable with, and in many cases better than, many state-of-the-art 3D face recognition algorithms, which use the whole facial domain. The proposed method does not rely on sophisticated alignment or denoising steps, is very robust when only one sample per subject is used in the gallery, and does not require a training step for the landmarking algorithm. https://github.com/mehryaragha/NoseBiometric

    Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms

    Full text link
    Precise 3D measurements of rigid surfaces are desired in many fields of application like quality control or surgery. Often, views from all around the object have to be acquired for a full 3D description of the object surface. We present a sensor principle called "Flying Triangulation" which avoids an elaborate "stop-and-go" procedure. It combines a low-cost classical light-section sensor with an algorithmic pipeline. A hand-guided sensor captures a continuous movie of 3D views while being moved around the object. The views are automatically aligned and the acquired 3D model is displayed in real time. In contrast to most existing sensors no bandwidth is wasted for spatial or temporal encoding of the projected lines. Nor is an expensive color camera necessary for 3D acquisition. The achievable measurement uncertainty and lateral resolution of the generated 3D data is merely limited by physics. An alternating projection of vertical and horizontal lines guarantees the existence of corresponding points in successive 3D views. This enables a precise registration without surface interpolation. For registration, a variant of the iterative closest point algorithm - adapted to the specific nature of our 3D views - is introduced. Furthermore, data reduction and smoothing without losing lateral resolution as well as the acquisition and mapping of a color texture is presented. The precision and applicability of the sensor is demonstrated by simulation and measurement results.Comment: 19 pages, 22 figure

    Fast Localization of Facial Landmark Points

    Full text link
    Localization of salient facial landmark points, such as eye corners or the tip of the nose, is still considered a challenging computer vision problem despite recent efforts. This is especially evident in unconstrained environments, i.e., in the presence of background clutter and large head pose variations. Most methods that achieve state-of-the-art accuracy are slow, and, thus, have limited applications. We describe a method that can accurately estimate the positions of relevant facial landmarks in real-time even on hardware with limited processing power, such as mobile devices. This is achieved with a sequence of estimators based on ensembles of regression trees. The trees use simple pixel intensity comparisons in their internal nodes and this makes them able to process image regions very fast. We test the developed system on several publicly available datasets and analyse its processing speed on various devices. Experimental results show that our method has practical value

    Deep Visual Attention Prediction

    Full text link
    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.Comment: W. Wang and J. Shen. Deep visual attention prediction. IEEE TIP, 27(5):2368-2378,2018. Code and results can be found in https://github.com/wenguanwang/deepattentio

    Attended End-to-end Architecture for Age Estimation from Facial Expression Videos

    Full text link
    The main challenges of age estimation from facial expression videos lie not only in the modeling of the static facial appearance, but also in the capturing of the temporal facial dynamics. Traditional techniques to this problem focus on constructing handcrafted features to explore the discriminative information contained in facial appearance and dynamics separately. This relies on sophisticated feature-refinement and framework-design. In this paper, we present an end-to-end architecture for age estimation, called Spatially-Indexed Attention Model (SIAM), which is able to simultaneously learn both the appearance and dynamics of age from raw videos of facial expressions. Specifically, we employ convolutional neural networks to extract effective latent appearance representations and feed them into recurrent networks to model the temporal dynamics. More importantly, we propose to leverage attention models for salience detection in both the spatial domain for each single image and the temporal domain for the whole video as well. We design a specific spatially-indexed attention mechanism among the convolutional layers to extract the salient facial regions in each individual image, and a temporal attention layer to assign attention weights to each frame. This two-pronged approach not only improves the performance by allowing the model to focus on informative frames and facial areas, but it also offers an interpretable correspondence between the spatial facial regions as well as temporal frames, and the task of age estimation. We demonstrate the strong performance of our model in experiments on a large, gender-balanced database with 400 subjects with ages spanning from 8 to 76 years. Experiments reveal that our model exhibits significant superiority over the state-of-the-art methods given sufficient training data.Comment: Accepted by Transactions on Image Processing (TIP
    corecore