24 research outputs found

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%−7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    How Useful are Reviews for Recommendation? A Critical Review and Potential Improvements

    Full text link
    We investigate a growing body of work that seeks to improve recommender systems through the use of review text. Generally, these papers argue that since reviews 'explain' users' opinions, they ought to be useful to infer the underlying dimensions that predict ratings or purchases. Schemes to incorporate reviews range from simple regularizers to neural network approaches. Our initial findings reveal several discrepancies in reported results, partly due to (e.g.) copying results across papers despite changes in experimental settings or data pre-processing. First, we attempt a comprehensive analysis to resolve these ambiguities. Further investigation calls for discussion on a much larger problem about the "importance" of user reviews for recommendation. Through a wide range of experiments, we observe several cases where state-of-the-art methods fail to outperform existing baselines, especially as we deviate from a few narrowly-defined settings where reviews are useful. We conclude by providing hypotheses for our observations, that seek to characterize under what conditions reviews are likely to be helpful. Through this work, we aim to evaluate the direction in which the field is progressing and encourage robust empirical evaluation.Comment: 4 pages, 3 figures. Accepted for publication at SIGIR '2

    NeuRec: On nonlinear transformation for personalized ranking

    Full text link
    © 2018 International Joint Conferences on Artificial Intelligence. All right reserved. Modeling user-item interaction patterns is an important task for personalized recommendations. Many recommender systems are based on the assumption that there exists a linear relationship between users and items while neglecting the intricacy and non-linearity of real-life historical interactions. In this paper, we propose a neural network based recommendation model (NeuRec) that untangles the complexity of user-item interactions and establish an integrated network to combine non-linear transformation with latent factors. We further design two variants of NeuRec: userbased NeuRec and item-based NeuRec, by focusing on different aspects of the interaction matrix. Extensive experiments on four real-world datasets demonstrated their superior performances on personalized ranking task

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    A Neural Attention Model for Adaptive Learning of Social Friends' Preferences

    Full text link
    Social-based recommendation systems exploit the selections of friends to combat the data sparsity on user preferences, and improve the recommendation accuracy of the collaborative filtering strategy. The main challenge is to capture and weigh friends' preferences, as in practice they do necessarily match. In this paper, we propose a Neural Attention mechanism for Social collaborative filtering, namely NAS. We design a neural architecture, to carefully compute the non-linearity in friends' preferences by taking into account the social latent effects of friends on user behavior. In addition, we introduce a social behavioral attention mechanism to adaptively weigh the influence of friends on user preferences and consequently generate accurate recommendations. Our experiments on publicly available datasets demonstrate the effectiveness of the proposed NAS model over other state-of-the-art methods. Furthermore, we study the effect of the proposed social behavioral attention mechanism and show that it is a key factor to our model's performance
    corecore