7,121 research outputs found

    Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features

    Get PDF
    Mostly computer vision problems related to crowd analytics are highly dependent upon multi-object tracking (MOT) systems. There are two major steps involved in the design of MOT system: object detection and association. In the first step, desired objects are detected in every frame of video stream. Detection quality directly influences the performance of tracking. The second step involves the correspondence of detected objects in current frame with the previous to obtain their trajectories. High accuracy in object detection system results in less number of missing detection and finally produces less fragmented tracks. Better object association increases the affinity between objects in different frames. This paper presents a novel algorithm for improved object detection followed by enhanced object tracking. Object detection accuracy has been increased by employing deep learning-based Faster region convolutional neural network (Faster R-CNN) algorithm. Object association is carried out by using appearance and improved motion features. Evaluation results show that we have enhanced the performance of current state-of-the-art work by reducing identity switches and fragmentation

    Video analytics system for surveillance videos

    Get PDF
    Developing an intelligent inspection system that can enhance the public safety is challenging. An efficient video analytics system can help monitor unusual events and mitigate possible damage or loss. This thesis aims to analyze surveillance video data, report abnormal activities and retrieve corresponding video clips. The surveillance video dataset used in this thesis is derived from ALERT Dataset, a collection of surveillance videos at airport security checkpoints. The video analytics system in this thesis can be thought as a pipelined process. The system takes the surveillance video as input, and passes it through a series of processing such as object detection, multi-object tracking, person-bin association and re-identification. In the end, we can obtain trajectories of passengers and baggage in the surveillance videos. Abnormal events like taking away other's belongings will be detected and trigger the alarm automatically. The system could also retrieve the corresponding video clips based on user-defined query

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Detect-and-Track: Efficient Pose Estimation in Videos

    Full text link
    This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.Comment: In CVPR 2018. Ranked first in ICCV 2017 PoseTrack challenge (keypoint tracking in videos). Code: https://github.com/facebookresearch/DetectAndTrack and webpage: https://rohitgirdhar.github.io/DetectAndTrack

    Object Detection in Videos with Tubelet Proposal Networks

    Full text link
    Object detection in videos has drawn increasing attention recently with the introduction of the large-scale ImageNet VID dataset. Different from object detection in static images, temporal information in videos is vital for object detection. To fully utilize temporal information, state-of-the-art methods are based on spatiotemporal tubelets, which are essentially sequences of associated bounding boxes across time. However, the existing methods have major limitations in generating tubelets in terms of quality and efficiency. Motion-based methods are able to obtain dense tubelets efficiently, but the lengths are generally only several frames, which is not optimal for incorporating long-term temporal information. Appearance-based methods, usually involving generic object tracking, could generate long tubelets, but are usually computationally expensive. In this work, we propose a framework for object detection in videos, which consists of a novel tubelet proposal network to efficiently generate spatiotemporal proposals, and a Long Short-term Memory (LSTM) network that incorporates temporal information from tubelet proposals for achieving high object detection accuracy in videos. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of the proposed framework for object detection in videos.Comment: CVPR 201
    • …
    corecore