43,143 research outputs found

    The Unification and Assessment of Multi-Objective Clustering Results of Categorical Datasets with H-Confidence Metric

    Get PDF
    Abstract: Multi objective clustering is one focused area of multi objective optimization. Multi objective optimization attracted many researchers in several areas over a decade. Utilizing multi objective clustering mainly considers multiple objectives simultaneously and results with several natural clustering solutions. Obtained result set suggests different point of views for solving the clustering problem. This paper assumes all potential solutions belong to different experts and in overall; ensemble of solutions finally has been utilized for finding the final natural clustering. We have tested on categorical datasets and compared them against single objective clustering result in terms of purity and distance measure of k-modes clustering. Our clustering results have been assessed to find the most natural clustering. Our results get hold of existing classes decided by human experts

    Improving Clustering Methods By Exploiting Richness Of Text Data

    No full text
    Clustering is an unsupervised machine learning technique, which involves discovering different clusters (groups) of similar objects in unlabeled data and is generally considered to be a NP hard problem. Clustering methods are widely used in a verity of disciplines for analyzing different types of data, and a small improvement in clustering method can cause a ripple effect in advancing research of multiple fields. Clustering any type of data is challenging and there are many open research questions. The clustering problem is exacerbated in the case of text data because of the additional challenges such as issues in capturing semantics of a document, handling rich features of text data and dealing with the well known problem of the curse of dimensionality. In this thesis, we investigate the limitations of existing text clustering methods and address these limitations by providing five new text clustering methods--Query Sense Clustering (QSC), Dirichlet Weighted K-means (DWKM), Multi-View Multi-Objective Evolutionary Algorithm (MMOEA), Multi-objective Document Clustering (MDC) and Multi-Objective Multi-View Ensemble Clustering (MOMVEC). These five new clustering methods showed that the use of rich features in text clustering methods could outperform the existing state-of-the-art text clustering methods. The first new text clustering method QSC exploits user queries (one of the rich features in text data) to generate better quality clusters and cluster labels. The second text clustering method DWKM uses probability based weighting scheme to formulate a semantically weighted distance measure to improve the clustering results. The third text clustering method MMOEA is based on a multi-objective evolutionary algorithm. MMOEA exploits rich features to generate a diverse set of candidate clustering solutions, and forms a better clustering solution using a cluster-oriented approach. The fourth and the fifth text clustering method MDC and MOMVEC address the limitations of MMOEA. MDC and MOMVEC differ in terms of the implementation of their multi-objective evolutionary approaches. All five methods are compared with existing state-of-the-art methods. The results of the comparisons show that the newly developed text clustering methods out-perform existing methods by achieving up to 16\% improvement for some comparisons. In general, almost all newly developed clustering algorithms showed statistically significant improvements over other existing methods. The key ideas of the thesis highlight that exploiting user queries improves Search Result Clustering(SRC); utilizing rich features in weighting schemes and distance measures improves soft subspace clustering; utilizing multiple views and a multi-objective cluster oriented method improves clustering ensemble methods; and better evolutionary operators and objective functions improve multi-objective evolutionary clustering ensemble methods. The new text clustering methods introduced in this thesis can be widely applied in various domains that involve analysis of text data. The contributions of this thesis which include five new text clustering methods, will not only help researchers in the data mining field but also to help a wide range of researchers in other fields

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201

    Locally Non-linear Embeddings for Extreme Multi-label Learning

    Full text link
    The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace. Still, leading embedding approaches have been unable to deliver high prediction accuracies or scale to large problems as the low rank assumption is violated in most real world applications. This paper develops the X-One classifier to address both limitations. The main technical contribution in X-One is a formulation for learning a small ensemble of local distance preserving embeddings which can accurately predict infrequently occurring (tail) labels. This allows X-One to break free of the traditional low-rank assumption and boost classification accuracy by learning embeddings which preserve pairwise distances between only the nearest label vectors. We conducted extensive experiments on several real-world as well as benchmark data sets and compared our method against state-of-the-art methods for extreme multi-label classification. Experiments reveal that X-One can make significantly more accurate predictions then the state-of-the-art methods including both embeddings (by as much as 35%) as well as trees (by as much as 6%). X-One can also scale efficiently to data sets with a million labels which are beyond the pale of leading embedding methods
    corecore