757 research outputs found

    Learning Ideological Latent space in Twitter

    Get PDF
    People are shifting from traditional news sources to online news at an incredibly fast rate. However, the technology behind online news consumption forces users to be confined to content that confirms with their own point of view. This has led to social phenomena like polarization of point-of-view and intolerance towards opposing views. In this thesis we study information filter bubbles from a mathematical standpoint. We use data mining techniques to learn a liberal-conservative ideology space in Twitter and presents a case study on how such a latent space can be used to tackle the filter bubble problem on social networks. We model the problem of learning liberal-conservative ideology as a constrained optimization problem. Using matrix factorization we uncover an ideological latent space for content consumption and social interaction habits of users in Twitter. We validate our model on real world Twitter dataset on three controversial topics - "Obamacare", "gun control" and "abortion". Using the proposed technique we are able to separate users by their ideology with 95% purity. Our analysis shows that there is a very high correlation (0.8 - 0.9) between the estimated ideology using machine learning and true ideology collected from various sources. Finally, we re-examine the learnt latent space, and present a case study showcasing how this ideological latent space can be used to develop exploratory and interactive interfaces that can help in diffusing the information filter bubble. Our matrix factorization based model for learning ideology latent space, along with the case studies provide a theoretically solid as well as a practical and interesting point-of-view to online polarization. Further, it provides a strong foundation and suggests several avenues for future work in multiple emerging interdisciplinary research areas, for instance, humanly interpretable and explanatory machine learning, transparent recommendations and a new field that we coin as Next Generation Social Networks

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning
    • …
    corecore